Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Non-Hermitian Phenomena in the Trimer Su-Schrieffer-Heeger Model

Giacomelli Nilsson, Elton LU (2024) FYSK04 20241
Department of Physics
Solid State Physics
Abstract
The trimer Su-Schrieffer-Heeger (SSH3) model extends the traditional Su-Schrieffer-Heeger model by incorporating an additional lattice site per unit cell. Although it lacks chiral symmetry, the SSH3 model exhibits bulk-boundary correspondence (BBC) with topologically protected, localized edge states under open boundary conditions. This thesis investigates non-Hermitian phenomena in the anisotropic SSH3 model. Introducing anisotropy in the hopping amplitudes breaks the BBC, leading to the emergence of the non-Hermitian skin effect and exceptional points. Through a unitary transformation, the SSH3 model is mapped to a model with reciprocal hopping amplitudes and on-site dissipation, where the non-Hermitian skin effect nevertheless remains.... (More)
The trimer Su-Schrieffer-Heeger (SSH3) model extends the traditional Su-Schrieffer-Heeger model by incorporating an additional lattice site per unit cell. Although it lacks chiral symmetry, the SSH3 model exhibits bulk-boundary correspondence (BBC) with topologically protected, localized edge states under open boundary conditions. This thesis investigates non-Hermitian phenomena in the anisotropic SSH3 model. Introducing anisotropy in the hopping amplitudes breaks the BBC, leading to the emergence of the non-Hermitian skin effect and exceptional points. Through a unitary transformation, the SSH3 model is mapped to a model with reciprocal hopping amplitudes and on-site dissipation, where the non-Hermitian skin effect nevertheless remains. An extensive analysis of exceptional points of order n (EPns) in the SSH3 model uncovers the existence of EP2s and EP3s, with EP2 lines connecting EP3s under chiral and particle-hole symmetry. EP3s are shown to occur only in the presence of chiral or sublattice symmetry. Additionally, analytical solutions for the boundary states are derived, and the biorthogonal framework is employed to examine the model's topological properties. The biorthogonal polarization is identified as a topological invariant that accurately predicts the localization of boundary states. (Less)
Popular Abstract
Attempts at understanding contemporary frontiers in physics, be it quantum computing or particle detectors, often tie us up in knots. It, therefore, appears ironic that the mathematics of knots provide a compelling framework for understanding complex phenomena on the nanoscale. Knots are classified using topological invariants - quantities that stay constant under smooth deformations like stretching or pulling. Surprisingly, such invariants turn out to be invaluable for classifying matter by forming the basis of topological phases, earning a prolific trio of researchers the Nobel Prize back in 2016 [1]. One notable example of such matter is the topological insulator, a chimera with an electrically conducting surface and an insulating bulk.... (More)
Attempts at understanding contemporary frontiers in physics, be it quantum computing or particle detectors, often tie us up in knots. It, therefore, appears ironic that the mathematics of knots provide a compelling framework for understanding complex phenomena on the nanoscale. Knots are classified using topological invariants - quantities that stay constant under smooth deformations like stretching or pulling. Surprisingly, such invariants turn out to be invaluable for classifying matter by forming the basis of topological phases, earning a prolific trio of researchers the Nobel Prize back in 2016 [1]. One notable example of such matter is the topological insulator, a chimera with an electrically conducting surface and an insulating bulk. The surface conductance is determined by a topological invariant from the bulk, in a phenomenon known as bulk-boundary correspondence [2]. Beyond being significant, it is also remarkable - as startling as if counting the rings of a tree could tell you exactly how many leaves it has. Further, the invariance under smooth deformations makes the conductive properties robust, akin to a tree maintaining its leaves regardless of how much it is shaken. So far, we have paced through the gnarly world of knots to the microcosm of topological insulators. But every good story needs a twist, and here is ours: Standard quantum mechanics assumes that energy is conserved. You and I, however, know that most fun happens when a few rules are broken; enter non-Hermitian physics, the realm of open systems. By introducing interactions with the environment, non-Hermitian physics becomes the home to beasts like exceptional points, where many quantum states collapse into one. If we take a guitar as an analogy, stumbling across an exceptional point would mean that several of our strings merge into one. On top of that, non- Hermiticity can lead to a broken bulk-boundary correspondence and the non-Hermitian skin effect, where states that typically occupy the bulk migrate to the surface. How are we to navigate such a treacherous terrain?

In this thesis, non-Hermitian phenomena are studied for a one-dimensional lattice model. I observe the non-Hermitian skin effect and identify all the exceptional points. Further, I explore a method that restores the bulk-boundary correspondence. Together, these results take us one step closer to understanding non-Hermitian topological matter. While my work is mathematical in scope, the potential applications of non-Hermitian topological insulators are vast. Topological insulators have the potential to revolutionize computing, exhibiting properties that could be used to create robust quantum computers [3]. The ever-growing demand for computational power, as has been accentuated by the recent boom of artificial intelligence, underscores the need to explore mindful computation, aligning with our responsibility towards sustainable development. In the non-Hermitian context, exceptional points have been proposed for high-precision sensing applications. Quantum optics has already benefited from non-Hermitian topological insulators, with experimental demonstrations of unidirectional lasing and media invisibility [4], [5], and a promising proposal for efficient light-funneling. These keywords - precision, robustness, and efficiency - highlight why we should be excited about the future of non-Hermitian topological insulators. (Less)
Popular Abstract (Swedish)
I våra försök att förstå fysikens banbrytande forskningsområden, vare sig det handlar om kvantdatorer eller partikel-detektorer, slår vi ofta knut på oss själva. Det verkar därför ironiskt att knutarnas matematik utför ett övertygande ramverk för att förstå komplexa fenomen på nanoskalan. Knutar klassificeras med hjälp av topologiska invarianter - kvantiteter som förblir konstanta under jämna deformationer som sträckning eller dragning. Överraskande nog visar sig sådana invarianter vara ovärderliga för att klassificera materia genom att utgöra grunden för topologiska faser och ge en produktiv forskartrio Nobelpriset 2016 [1]. Ett anmärkningsvärt exempel på sådan materia är den topologiska isolatorn, en chimär med en elektriskt ledande yta... (More)
I våra försök att förstå fysikens banbrytande forskningsområden, vare sig det handlar om kvantdatorer eller partikel-detektorer, slår vi ofta knut på oss själva. Det verkar därför ironiskt att knutarnas matematik utför ett övertygande ramverk för att förstå komplexa fenomen på nanoskalan. Knutar klassificeras med hjälp av topologiska invarianter - kvantiteter som förblir konstanta under jämna deformationer som sträckning eller dragning. Överraskande nog visar sig sådana invarianter vara ovärderliga för att klassificera materia genom att utgöra grunden för topologiska faser och ge en produktiv forskartrio Nobelpriset 2016 [1]. Ett anmärkningsvärt exempel på sådan materia är den topologiska isolatorn, en chimär med en elektriskt ledande yta och en isolerande bulk. Ytledningsförmågan bestäms av en topologisk invariant från bulken, i ett fenomen känt som bulk-boundary correspondence [2]. Förutom att vara betydelsefullt, är det också anmärkningsvärt - lika häpnadsväckande som om att räkna årsringarna på ett träd kunde berätta exakt hur många löv det har. Vidare gör invariansen under mjuka deformationer de ledande egenskaperna robusta, likt ett träd som behåller sina löv oavsett hur mycket det skakas.

Hittills har vi tagit oss genom knutarnas snåriga värld till de topologiska isolatorernas mikrokosmos. Men varje bra historia behöver en vändning, och här är vår: Standardkvantmekaniken antar att energi bevaras. Du och jag vet dock att det mesta roliga händer när några regler bryts; här träder den icke-Hermitiska fysiken in, de öppna systemens värld. Genom att introducera interaktioner med omgivningen blir icke-Hermitisk fysik hem för bestar som exceptionella punkter, där många kvanttillstånd kollapsar till ett. Om vi tar en gitarr som en analogi, skulle det innebära att flera av våra strängar smälter samman till en när vi snubblar över en exceptionell punkt. Dessutom kan icke- Hermitiskhet leda till en bruten bulk-boundary correspondence och den hudtopologiska effekten, där tillstånd som vanligtvis upptar bulken migrerar till ytan. Hur ska vi navigera i en sådan förrädiskt terräng?

I denna avhandling studeras icke-Hermitiska fenomen för en endimensionell gittermodell. Jag observerar den hudtopologiska effekten och identifierar alla exceptionella punkter. Vidare utforskar jag en metod som återställer bulk-boundary correspondence. Tillsammans tar dessa resultat oss ett steg närmare en förståelse av icke-Hermitisk topologisk materia. Även om mitt arbete är matematiskt i sin omfattning, är de potentiella tillämpningarna av icke-Hermitianska topologiska isolatorer enorma. Topologiska isolatorer har potentialen att revolutionera databehandling, med egenskaper som kan användas för att skapa robusta kvantdatorer [3]. Den ständigt växande efterfrågan på beräkningskraft, som har accentuerats av den senaste boomen inom artificiell intelligens, understryker behovet av att utforska medveten beräkning, i linje med vårt ansvar för hållbar utveckling. I det icke-Hermitiska sammanhanget har exceptionella punkter föreslagits för användning i högprecisionssensorer. Kvantoptik har redan dragit nytta av icke-Hermitiska topologiska isolatorer, med experimentella demonstrationer av enkelriktad lasring och mediasynlighet [4], [5], och ett lovande förslag för effektiv ljuskanalisering. Dessa nyckelord - precision, robusthet och effektivitet - belyser varför vi bör vara entusiastiska över framtiden för icke-Hermitiska topologiska isolatorer. (Less)
Please use this url to cite or link to this publication:
author
Giacomelli Nilsson, Elton LU
supervisor
organization
course
FYSK04 20241
year
type
M2 - Bachelor Degree
subject
keywords
Non-Hermitian, Topological insulator, Bulk-Boundary Correspondence
language
English
id
9170195
date added to LUP
2024-08-14 08:52:27
date last changed
2024-08-14 08:52:27
@misc{9170195,
  abstract     = {{The trimer Su-Schrieffer-Heeger (SSH3) model extends the traditional Su-Schrieffer-Heeger model by incorporating an additional lattice site per unit cell. Although it lacks chiral symmetry, the SSH3 model exhibits bulk-boundary correspondence (BBC) with topologically protected, localized edge states under open boundary conditions. This thesis investigates non-Hermitian phenomena in the anisotropic SSH3 model. Introducing anisotropy in the hopping amplitudes breaks the BBC, leading to the emergence of the non-Hermitian skin effect and exceptional points. Through a unitary transformation, the SSH3 model is mapped to a model with reciprocal hopping amplitudes and on-site dissipation, where the non-Hermitian skin effect nevertheless remains. An extensive analysis of exceptional points of order n (EPns) in the SSH3 model uncovers the existence of EP2s and EP3s, with EP2 lines connecting EP3s under chiral and particle-hole symmetry. EP3s are shown to occur only in the presence of chiral or sublattice symmetry. Additionally, analytical solutions for the boundary states are derived, and the biorthogonal framework is employed to examine the model's topological properties. The biorthogonal polarization is identified as a topological invariant that accurately predicts the localization of boundary states.}},
  author       = {{Giacomelli Nilsson, Elton}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Non-Hermitian Phenomena in the Trimer Su-Schrieffer-Heeger Model}},
  year         = {{2024}},
}