Slaggrus – styvhet, krav & användning; En teknisk undersökning av slaggrus för vägöverbyggnad
(2024) In CODEN: LUTVDG/(TVTT-5359)/109/2024 VTVM05 20241Transport and Roads
- Abstract (Swedish)
- Bergkross är det främsta materialet för uppbyggnad av vägar idag. Det är ett jungfruligt material som bara ökar i produktion för användning i anläggningssektorn. För att minska användningen och i förlängningen också produktionen av jungfruliga material undersöks mer sekundära ballastmaterial som exempelvis slaggrus för att nå ett cirkulärt flöde.
Slaggrus har undersökts utifrån olika aspekter men saknar noggranna undersökningar avseende tekniska egenskaper och mer specifikt hållfasthet och bärighet vid användning i vägkroppen. Det finns få till inga råd eller anvisningar för slaggrus i Allmän material- och arbetsbeskrivning (AMA) eller förutsättningar vid beräkning av slaggrus. Detta kan leda till att materialet bortses som ett möjligt... (More) - Bergkross är det främsta materialet för uppbyggnad av vägar idag. Det är ett jungfruligt material som bara ökar i produktion för användning i anläggningssektorn. För att minska användningen och i förlängningen också produktionen av jungfruliga material undersöks mer sekundära ballastmaterial som exempelvis slaggrus för att nå ett cirkulärt flöde.
Slaggrus har undersökts utifrån olika aspekter men saknar noggranna undersökningar avseende tekniska egenskaper och mer specifikt hållfasthet och bärighet vid användning i vägkroppen. Det finns få till inga råd eller anvisningar för slaggrus i Allmän material- och arbetsbeskrivning (AMA) eller förutsättningar vid beräkning av slaggrus. Detta kan leda till att materialet bortses som ett möjligt anläggningsmaterial då kunskapen om bärighetsberäkningar är låg.
Syftet med detta arbete är att undersöka slaggrusets deformationsegenskaper genom att ta fram styvhetsmoduler. Detta har gjorts genom att testa slaggrusets deformation och mer specifikt lätt fallvikt (LWD) i Trelleborgs Hamn och Återvinningscentralen (ÅVC) Hedeskoga i Ystad. Statisk plattbelastning har också utförts på ÅVC Hedeskoga, samt tung fallvikt (FWD) på Törringevägen i Malmö. En analys har utförts på styvhetsförhållandet mellan slaggrus och jungfruligt material för att ta fram styvhetsmoduler till dimensioneringsprogrammet PMS-objekt. Slaggrusegenskaper, deformationen inkluderat, har också undersökts mot Trafikverkets krav samt hur det kan användas utifrån AMA. Rekommendationer har tagits fram utifrån detta.
Arbetet har avgränsats till slaggrus vilket är slagg som är behandlat från avfallsförbränning och ska inte misstas för exempelvis masugnsslagg vilket kommer från tillverkningen av stål. Slaggruset ska komma ifrån Sverige och undersökts för användning i vägöverbyggnad. Det har också avgränsats till de projekt och data som har kunnat vara tillgängliga. Kraven för slaggrus utgår från Trafikverkets krav samt AMA.
En litteraturundersökning utfördes kring mätmetoderna, PMS-objekt, Trafikverkets krav, AMA anläggning samt slaggrus. Det visade sig att slaggrus inte uppnår Trafikverkets krav (krav som exempelvis organisk halt, nötningsegenskaper, värmekonduktivitet, siktkurva) för obundet bärlager, förstärkningslager eller skyddslager. För obundet bärlager samt förstärkningslager är det flera krav som inte uppnås men för skyddslager uppnås inte bara ett: slaggrus innehåller ämnen som exempelvis bly och kadmium som är med på Trafikverkets förbudslista för användning. Bärighetskraven från Trafikverket undersöktes också närmare och uppnåddes för skydds- och förstärkningslager men inte för obundet bärlager.
Flera olika styvheter togs fram för slaggrus genom provningsmetoder i fält och litteraturundersökningar. LWD resultat, dynamiska styvhet, hade liknande medelvärde: 21,87 MPa samt 23,59 MPa, men olika spridningar på 5 MPa och 10 MPa. Resultatet av LWD ämnades omräknas till statisk deformation vid andra pålastningen, E_v2, samt resilientmodul, M_r, för att få mer standardiserade data att analysera. På grund av för stor spridning kunde E_v2 och M_r ej beräknas. Resultatet jämfördes också med en tidigare undersökning vilket gav ett styvhetsförhållande mellan slaggrus och sand.
FWD resultat på Törringevägen kunde inte utvärderas genom passningsberäkning då deflektionsbassängerna för slaggrus inte följde standardutformningen. Det kunde göras en utvärdering av baskurvindex (BCI) värdet och förhållandet mellan provsträcka och referenssträcka. Resultatet gav ett förhållande av styvheten mellan slaggrus och förstärkningslager vilket kombinerat med tidigare underökningar blev en styvhet på ca 61%-81% av styvhet av fraktion 0–90 mm bergkross.
Statiskt plattbelastningsresultat utfördes på tre punkter och E_v2-värdet för slaggrus kunde utvärderas tillsammans med tidigare undersökningar. En styvhetsmodul mellan 50–93 MPa kunde tas fram.
Styvhetsmodulen kunde tas fram utifrån förhållanden mellan slaggrus och krossat berg samt sand. Resultatet ansågs vara för osäkert för göra en bra rekommendation utifrån antaganden från sekundärdata samt få provningspunkter att analysera. Det tidigare antagna styvhetsmoduler för slaggrus rekommenderas i stället tills mer undersökningar har gjorts, se tabell 22 för rekommenderade styvhetsmoduler.
Sammanfattningsvis kan slaggrus användas som förstärkningslager samt skyddslager men har en sämre styvhet på ca 61%-81% av bergkross, fraktion 0–90 mm, vilket behöver anpassas vid dimensioneringen. Slaggrus har också en sämre krossningsbeständighet än exempelvis krossat berg vilket behöver hanteras vid packning. Däremot är slaggrus lättpackat baserat på erfarenheter, det har en låg tjälfarlighet genom en lägre värmekonduktivitet än exempelvis bergkross samt har en bättre klimatnytta än jungfruliga material. (Less) - Abstract
- Crushed stone is the main material for building roads today. It is a virgin material that is only increasing in production for use in the construction sector. To reduce the use of virgin materials, and with it the production, more secondary aggregate materials such as Municipal solid waste incinerated (MSWI) bottom ash are being investigated to achieve a circular flow.
MSWI bottom ash has been investigated based on various aspects but lacks thorough investigations regarding technical properties -specifically strength and load-bearing capacity as used in the road body. There is little to no advice or guidance for MSWI bottom ash in the AMA or prerequisites for calculating. This can lead to it being disregarded as a possible construction... (More) - Crushed stone is the main material for building roads today. It is a virgin material that is only increasing in production for use in the construction sector. To reduce the use of virgin materials, and with it the production, more secondary aggregate materials such as Municipal solid waste incinerated (MSWI) bottom ash are being investigated to achieve a circular flow.
MSWI bottom ash has been investigated based on various aspects but lacks thorough investigations regarding technical properties -specifically strength and load-bearing capacity as used in the road body. There is little to no advice or guidance for MSWI bottom ash in the AMA or prerequisites for calculating. This can lead to it being disregarded as a possible construction material as the knowledge of bearing capacity calculations is low.
The purpose of this work is to investigate the deformation properties of the MSWI bottom ash by producing stiffness moduli. This has been done by testing the deformation of the crushed gravel by light weight deflectometer (LWD) at Trelleborgs Hamn and “Återvinningscentral” (ÅVC) Hedeskoga in Ystad. Static plate loading has also been carried out at ÅVC Hedeskoga and fall weight Deflectometer (FWD) has been carried out on Törringevägen in Malmö. Analysis has been carried out on the stiffness ratio between MSWI bottom ash and virgin material to produce stiffness modules for the calculation program PMS objects. MSWI bottom ash properties, deformation included, have been investigated against the requirements of the Swedish Transport Administration “Trafikverket” and how it can be used based on AMA. Recommendations have been made for the use of the material.
The work has been limited to MSWI bottom ash, which is slag that has been treated from waste incineration and should not be mistaken for example blast furnace slag which comes from the manufacture of steel. The MSWI bottom ash shall come from Sweden and investigated for use in road construction. It has also been limited to the projects and data that have been available. The requirements for MSWI bottom ash are based on the Swedish Transport Administration's requirements and the AMA.
A literature study was also carried out on the measurement methods, PMS objects, the Swedish Transport Administration's requirements, AMA and MSWI bottom ash. MSWI bottom ash’s technical properties were developed based on the requirements set by the Swedish Transport Administration and AMA. It turned out that MSWI bottom ash does not meet the Swedish Transport Administration's requirements (requirements such as organic content, abrasion properties, thermal conductivity, visibility curve) for unbound support layer, reinforcement layer or protective layer. For unbound bearing layers and reinforcement layers, there are several requirements that are not met, but for protective layers only one are not met: that MSWI bottom ash contains substances such as lead and cadmium, which are on the Swedish Transport Administration's prohibition list for use. The load-bearing capacity requirements from the Swedish Transport Administration were investigated more closely and achieved for protection and reinforcement layers, but not for unbonded load-bearing layers.
Several different stiffnesses were developed for MSWI bottom ash through testing methods in the field and literature study. LWD results, dynamic stiffness, had similar mean values of 21.87 MPa and 23.59 MPa, but different spreads between 5 MPa and 10 MPa. The result of LWD attempted to be recalculated to E_v2as well as M_r, to have more standardized data to analyze. This was not successful as the result gave too much spread and uncertainty. The result was also compared with a previous investigation, which gave a stiffness ratio between MSWI bottom ash and sand.
FWD results on Törringevägen could not be evaluated by backwards calculation as the deflection basins for MSWI bottom ash did not follow the standard design. An evaluation of the base curve index (BCI) value and the ratio between test roads and reference roads could be made. The result gave a ratio of the stiffness between MSWI bottom ash and reference road, which was equivalent to previous investigations, approximately 61%-81% stiffness of crushed stone compared to 0-90 mm crushed rock.
Static plate load results were performed at three points and the E_v2value for MSWI bottom ash could be evaluated together with previous investigations. A stiffness modulus between 50–93 MPa was the result.
Stiffness modulus could be derived based on ratios between MSWI bottom ash and crushed rock as well as sand. However, the result was too uncertain to make a good recommendation based on assumptions from secondary data and few test points to analyze. Therefore, previously adopted stiffness moduli for MSWI bottom ash are recommended until more research is done, see table 16 for recommended stiffness moduli.
Conclusively, MSWI bottom ash can be used as a reinforcement layer and protective layer. On the other hand, MSWI bottom ash has a lower stiffness of approx. 61%-81% of crushed rock, 0-90 mm, which needs to be adjusted when dimensioning. MSWI bottom ash also has a poorer crushing resistance the crossed rock, which needs to be handled when compacting. The materials better qualities should also be lifted. MSWI bottom ash is easily packed based on experience, it has a low frost hazard due to a lower heat conductivity than for example crushed rock and has a better climate benefit than virgin materials. (Less)
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/9174074
- author
- Andersson, Johan LU
- supervisor
-
- Sven Agardh LU
- organization
- alternative title
- Municipal solid waste incinerated (MSWI) bottom ash - stiffnes, requirement & use in roads
- course
- VTVM05 20241
- year
- 2024
- type
- H3 - Professional qualifications (4 Years - )
- subject
- keywords
- Slaggrus, Lätt fallvikt, Tung fallvikt, Plattbelastning, PMS-objekt, Styvhet
- publication/series
- CODEN: LUTVDG/(TVTT-5359)/109/2024
- report number
- 392
- ISSN
- 1653-1922
- language
- Swedish
- id
- 9174074
- date added to LUP
- 2024-09-10 09:04:23
- date last changed
- 2024-09-10 09:04:23
@misc{9174074, abstract = {{Crushed stone is the main material for building roads today. It is a virgin material that is only increasing in production for use in the construction sector. To reduce the use of virgin materials, and with it the production, more secondary aggregate materials such as Municipal solid waste incinerated (MSWI) bottom ash are being investigated to achieve a circular flow. MSWI bottom ash has been investigated based on various aspects but lacks thorough investigations regarding technical properties -specifically strength and load-bearing capacity as used in the road body. There is little to no advice or guidance for MSWI bottom ash in the AMA or prerequisites for calculating. This can lead to it being disregarded as a possible construction material as the knowledge of bearing capacity calculations is low. The purpose of this work is to investigate the deformation properties of the MSWI bottom ash by producing stiffness moduli. This has been done by testing the deformation of the crushed gravel by light weight deflectometer (LWD) at Trelleborgs Hamn and “Återvinningscentral” (ÅVC) Hedeskoga in Ystad. Static plate loading has also been carried out at ÅVC Hedeskoga and fall weight Deflectometer (FWD) has been carried out on Törringevägen in Malmö. Analysis has been carried out on the stiffness ratio between MSWI bottom ash and virgin material to produce stiffness modules for the calculation program PMS objects. MSWI bottom ash properties, deformation included, have been investigated against the requirements of the Swedish Transport Administration “Trafikverket” and how it can be used based on AMA. Recommendations have been made for the use of the material. The work has been limited to MSWI bottom ash, which is slag that has been treated from waste incineration and should not be mistaken for example blast furnace slag which comes from the manufacture of steel. The MSWI bottom ash shall come from Sweden and investigated for use in road construction. It has also been limited to the projects and data that have been available. The requirements for MSWI bottom ash are based on the Swedish Transport Administration's requirements and the AMA. A literature study was also carried out on the measurement methods, PMS objects, the Swedish Transport Administration's requirements, AMA and MSWI bottom ash. MSWI bottom ash’s technical properties were developed based on the requirements set by the Swedish Transport Administration and AMA. It turned out that MSWI bottom ash does not meet the Swedish Transport Administration's requirements (requirements such as organic content, abrasion properties, thermal conductivity, visibility curve) for unbound support layer, reinforcement layer or protective layer. For unbound bearing layers and reinforcement layers, there are several requirements that are not met, but for protective layers only one are not met: that MSWI bottom ash contains substances such as lead and cadmium, which are on the Swedish Transport Administration's prohibition list for use. The load-bearing capacity requirements from the Swedish Transport Administration were investigated more closely and achieved for protection and reinforcement layers, but not for unbonded load-bearing layers. Several different stiffnesses were developed for MSWI bottom ash through testing methods in the field and literature study. LWD results, dynamic stiffness, had similar mean values of 21.87 MPa and 23.59 MPa, but different spreads between 5 MPa and 10 MPa. The result of LWD attempted to be recalculated to E_v2as well as M_r, to have more standardized data to analyze. This was not successful as the result gave too much spread and uncertainty. The result was also compared with a previous investigation, which gave a stiffness ratio between MSWI bottom ash and sand. FWD results on Törringevägen could not be evaluated by backwards calculation as the deflection basins for MSWI bottom ash did not follow the standard design. An evaluation of the base curve index (BCI) value and the ratio between test roads and reference roads could be made. The result gave a ratio of the stiffness between MSWI bottom ash and reference road, which was equivalent to previous investigations, approximately 61%-81% stiffness of crushed stone compared to 0-90 mm crushed rock. Static plate load results were performed at three points and the E_v2value for MSWI bottom ash could be evaluated together with previous investigations. A stiffness modulus between 50–93 MPa was the result. Stiffness modulus could be derived based on ratios between MSWI bottom ash and crushed rock as well as sand. However, the result was too uncertain to make a good recommendation based on assumptions from secondary data and few test points to analyze. Therefore, previously adopted stiffness moduli for MSWI bottom ash are recommended until more research is done, see table 16 for recommended stiffness moduli. Conclusively, MSWI bottom ash can be used as a reinforcement layer and protective layer. On the other hand, MSWI bottom ash has a lower stiffness of approx. 61%-81% of crushed rock, 0-90 mm, which needs to be adjusted when dimensioning. MSWI bottom ash also has a poorer crushing resistance the crossed rock, which needs to be handled when compacting. The materials better qualities should also be lifted. MSWI bottom ash is easily packed based on experience, it has a low frost hazard due to a lower heat conductivity than for example crushed rock and has a better climate benefit than virgin materials.}}, author = {{Andersson, Johan}}, issn = {{1653-1922}}, language = {{swe}}, note = {{Student Paper}}, series = {{CODEN: LUTVDG/(TVTT-5359)/109/2024}}, title = {{Slaggrus – styvhet, krav & användning; En teknisk undersökning av slaggrus för vägöverbyggnad}}, year = {{2024}}, }