Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Pharmaceutical Aerosols and Dry Powder Formulations: Characterization of Nasal deposition using the Alberta Idealized Nasal Inlet

Johnsson Watmough, Oliver LU (2025) MAMM05 20242
Ergonomics and Aerosol Technology
Abstract
Respiratory diseases are a major global health challenge where current inhalation medication is primarily by oral inhalation. An alternative administration route is by nasal inhalation allowing for rapid drug absorption, high patient compliance and avoidance of the first-pass effect. Despite its potential for local and systemic drug delivery there is limited research on active inhalation of dry powders and its regional deposition in the nasal cavity. Highlighting the need to investigate its potential as an administration option. This thesis aims to develop an understanding of nasal deposition of dry powder formulations with the goal of optimizing current formulations to be deposited in the nasal cavity. This was done by developing a method... (More)
Respiratory diseases are a major global health challenge where current inhalation medication is primarily by oral inhalation. An alternative administration route is by nasal inhalation allowing for rapid drug absorption, high patient compliance and avoidance of the first-pass effect. Despite its potential for local and systemic drug delivery there is limited research on active inhalation of dry powders and its regional deposition in the nasal cavity. Highlighting the need to investigate its potential as an administration option. This thesis aims to develop an understanding of nasal deposition of dry powder formulations with the goal of optimizing current formulations to be deposited in the nasal cavity. This was done by developing a method to generate and measure mono- and polydisperse aerosols which was used to characterize the Alberta Idealized Nasal Inlet (AINI) model. The effects of bounce have been evaluated by coating the AINI, and the regional deposition of three formulations have been analyzed in the AINI by active inhalation. Lastly, the possibility of delivering most of a pulmonary formulation to the lungs by nasal inhalation has been evaluated.

A method was developed to generate and measure mono- and polydisperse aerosols. Increasing particle sizes and flow rates showed larger deposition in the uncoated and coated AINI. However, coating displayed lower deposition for particles below 3 μm compared to uncoated. This could possibly be due to crevices, when uncoated, causing increased turbulence. Nasal deposition was characterized using the AINI where 5-10 μm aerosols showed a 98-100% deposition at 45 L/min when coated. For a nasal formulation with a D50 > 20 μm and D50 < 30 μm most of the formulation deposited in the nasal cavity independent of flow rate whilst reducing deposition in areas with poor absorption. During the experimental part it was discovered that the adapter’s 90° angle was not ideal since it directed the inhalers outlet into the vestibule walls of the AINI. Initial trials showed (data not published in this report) that adjusting the adapter improved regional deposition, in line with published results for nasal sprays. For a pulmonary formulation with a D50 < 5 μm it deposited both in the nasal cavity and on the filter (representing the lungs in this study). Suggesting a possibility of delivering most of a pulmonary formulation to the lungs by nasal inhalation, but further research is required. Lastly, the prospect of having regional deposition independent of flow rate is a desired property and passive DPIs may hold the answer of achieving this. (Less)
Popular Abstract (Swedish)
Luftvägssjukdomar är en av de vanligaste orsakerna till dödsfall och påverkar miljontals människor i världen årligen. Idag är den vanligaste administrationsvägen vid behandling av dessa sjukdomar via munnen genom att inhalera en läkemedelsaerosol, små partiklar lösta i en gas som ger en läkemedelseffekt. Även om denna metod är effektiv så finns det ett behov av att hitta fler sätt att bekämpa luftvägssjukdomar.

En sådan alternativ administrationsväg skulle kunna vara genom näsan. Trots att denna väg har snabbt läkemedelsupptag, är den relativt outforskad när det kommer till pulverläkemedel och i vilka områden det hamnar i näsan. Det finns därmed ett behov att fylla denna kunskapslucka för att i framtiden kunna använda denna... (More)
Luftvägssjukdomar är en av de vanligaste orsakerna till dödsfall och påverkar miljontals människor i världen årligen. Idag är den vanligaste administrationsvägen vid behandling av dessa sjukdomar via munnen genom att inhalera en läkemedelsaerosol, små partiklar lösta i en gas som ger en läkemedelseffekt. Även om denna metod är effektiv så finns det ett behov av att hitta fler sätt att bekämpa luftvägssjukdomar.

En sådan alternativ administrationsväg skulle kunna vara genom näsan. Trots att denna väg har snabbt läkemedelsupptag, är den relativt outforskad när det kommer till pulverläkemedel och i vilka områden det hamnar i näsan. Det finns därmed ett behov att fylla denna kunskapslucka för att i framtiden kunna använda denna administrationsväg som ett ytterligare verktyg att behandla luftvägssjukdomar. Under detta projekt har en mätmetod utvecklats för att undersöka vilka partikelstorlekar som fastnar i näsan. För att undersöka detta har en modell av näsan använts, som återspeglar den mänskliga näsans struktur. Projektet har bestått av två delar – utveckling av en metod för att generera samt mäta vart aerosoler sätter sig i näsmodellen och undersöka i vilka regioner i näsmodellen som pulverläkemedel hamnar.

Mätningarna genom näsmodellen visar att både små aerosoler och partiklar (mindre än tre mikrometer) passerar genom näsan utan att hamna på dess väggar, medan större aerosoler och partiklar (över sju mikrometer) krockar och fastnar där. Dessa resultat bidrar med viktig kunskap kring hur storleken på pulverläkemedel kan anpassas för att hamna i regionerna med högre upptag, något som är kritiskt vid behandling. Med fortsatt forskning kan detta bli ännu ett verktyg i kampen mot luftvägssjukdomar och förbättra livskvaliteten för miljontals människor. (Less)
Please use this url to cite or link to this publication:
author
Johnsson Watmough, Oliver LU
supervisor
organization
course
MAMM05 20242
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Aerosol, dry powder, active inhalation, nasal deposition, nasal inhalation, Alberta Idealised Nasal Inlet model
language
English
id
9185983
date added to LUP
2025-03-05 14:22:20
date last changed
2025-03-05 14:22:20
@misc{9185983,
  abstract     = {{Respiratory diseases are a major global health challenge where current inhalation medication is primarily by oral inhalation. An alternative administration route is by nasal inhalation allowing for rapid drug absorption, high patient compliance and avoidance of the first-pass effect. Despite its potential for local and systemic drug delivery there is limited research on active inhalation of dry powders and its regional deposition in the nasal cavity. Highlighting the need to investigate its potential as an administration option. This thesis aims to develop an understanding of nasal deposition of dry powder formulations with the goal of optimizing current formulations to be deposited in the nasal cavity. This was done by developing a method to generate and measure mono- and polydisperse aerosols which was used to characterize the Alberta Idealized Nasal Inlet (AINI) model. The effects of bounce have been evaluated by coating the AINI, and the regional deposition of three formulations have been analyzed in the AINI by active inhalation. Lastly, the possibility of delivering most of a pulmonary formulation to the lungs by nasal inhalation has been evaluated. 

A method was developed to generate and measure mono- and polydisperse aerosols. Increasing particle sizes and flow rates showed larger deposition in the uncoated and coated AINI. However, coating displayed lower deposition for particles below 3 μm compared to uncoated. This could possibly be due to crevices, when uncoated, causing increased turbulence. Nasal deposition was characterized using the AINI where 5-10 μm aerosols showed a 98-100% deposition at 45 L/min when coated. For a nasal formulation with a D50 > 20 μm and D50 < 30 μm most of the formulation deposited in the nasal cavity independent of flow rate whilst reducing deposition in areas with poor absorption. During the experimental part it was discovered that the adapter’s 90° angle was not ideal since it directed the inhalers outlet into the vestibule walls of the AINI. Initial trials showed (data not published in this report) that adjusting the adapter improved regional deposition, in line with published results for nasal sprays. For a pulmonary formulation with a D50 < 5 μm it deposited both in the nasal cavity and on the filter (representing the lungs in this study). Suggesting a possibility of delivering most of a pulmonary formulation to the lungs by nasal inhalation, but further research is required. Lastly, the prospect of having regional deposition independent of flow rate is a desired property and passive DPIs may hold the answer of achieving this.}},
  author       = {{Johnsson Watmough, Oliver}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Pharmaceutical Aerosols and Dry Powder Formulations: Characterization of Nasal deposition using the Alberta Idealized Nasal Inlet}},
  year         = {{2025}},
}