Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Integrated Stereovision for an Autonomous Ground Vehicle Competing in the Darpa Grand Challenge

Göransson, Marie and Johannesson, Erik (2005) In MSc Theses
Department of Automatic Control
Abstract
The DARPA Grand Challenge (DGC) 2005 was a competition, in form of a desert race for autonomous ground vehicles, arranged by the U.S. Defense Advanced Research Project Agency (DARPA). The purpose was to encourage research and development of related technology. The objective of the race was to track a distance of 131.6 miles in less than 10 hours without any human interaction. Only public GPS signals and terrain sensors were allowed for navigation and obstacle detection. One of the teams competing in the DGC was Team Caltech from California Institute of Technology, consisting primarily of undergraduate students. The vehicle representing Team Caltech was a 2005 Ford E-350 van, named Alice. Alice had been modified for off-road driving and... (More)
The DARPA Grand Challenge (DGC) 2005 was a competition, in form of a desert race for autonomous ground vehicles, arranged by the U.S. Defense Advanced Research Project Agency (DARPA). The purpose was to encourage research and development of related technology. The objective of the race was to track a distance of 131.6 miles in less than 10 hours without any human interaction. Only public GPS signals and terrain sensors were allowed for navigation and obstacle detection. One of the teams competing in the DGC was Team Caltech from California Institute of Technology, consisting primarily of undergraduate students. The vehicle representing Team Caltech was a 2005 Ford E-350 van, named Alice. Alice had been modified for off-road driving and equipped with multiple sensors, computers and actuators. One type of terrain sensors used on Alice was stereovision. Two camera pairs were used for short and long range obstacle detection. This master thesis concerns development, testing and integration of stereovision sensors during the final four months leading to the race. To begin with, the stereovision system on Alice was not ready to use and had not undergone any testing. The work described in this thesis enabled operation of stereovision. It further improved its capability such that it increased the overall performance of Alice. Reliability was demonstrated through multiple desert field tests. Obstacle avoidance and navigation using only stereovision was successfully demonstrated. The completed work includes design and implementation of algorithms to improve camera focus and exposure control, increase processing speed and remove noise. Also hardware and software parameters were configured to achieve best possible operation. Alice managed to qualify to the race as one of the top ten vehicles. However she was only able to complete about 8 miles before running over a concrete barrier and out of the course, as a result of hardware failures and state estimation errors. (Less)
Please use this url to cite or link to this publication:
author
Göransson, Marie and Johannesson, Erik
supervisor
organization
year
type
H3 - Professional qualifications (4 Years - )
subject
publication/series
MSc Theses
report number
TFRT-5760
ISSN
0280-5316
language
English
id
8847970
date added to LUP
2016-03-18 09:51:05
date last changed
2016-03-18 09:51:05
@misc{8847970,
  abstract     = {{The DARPA Grand Challenge (DGC) 2005 was a competition, in form of a desert race for autonomous ground vehicles, arranged by the U.S. Defense Advanced Research Project Agency (DARPA). The purpose was to encourage research and development of related technology. The objective of the race was to track a distance of 131.6 miles in less than 10 hours without any human interaction. Only public GPS signals and terrain sensors were allowed for navigation and obstacle detection. One of the teams competing in the DGC was Team Caltech from California Institute of Technology, consisting primarily of undergraduate students. The vehicle representing Team Caltech was a 2005 Ford E-350 van, named Alice. Alice had been modified for off-road driving and equipped with multiple sensors, computers and actuators. One type of terrain sensors used on Alice was stereovision. Two camera pairs were used for short and long range obstacle detection. This master thesis concerns development, testing and integration of stereovision sensors during the final four months leading to the race. To begin with, the stereovision system on Alice was not ready to use and had not undergone any testing. The work described in this thesis enabled operation of stereovision. It further improved its capability such that it increased the overall performance of Alice. Reliability was demonstrated through multiple desert field tests. Obstacle avoidance and navigation using only stereovision was successfully demonstrated. The completed work includes design and implementation of algorithms to improve camera focus and exposure control, increase processing speed and remove noise. Also hardware and software parameters were configured to achieve best possible operation. Alice managed to qualify to the race as one of the top ten vehicles. However she was only able to complete about 8 miles before running over a concrete barrier and out of the course, as a result of hardware failures and state estimation errors.}},
  author       = {{Göransson, Marie and Johannesson, Erik}},
  issn         = {{0280-5316}},
  language     = {{eng}},
  note         = {{Student Paper}},
  series       = {{MSc Theses}},
  title        = {{Integrated Stereovision for an Autonomous Ground Vehicle Competing in the Darpa Grand Challenge}},
  year         = {{2005}},
}