Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Utöka användningsområdet av höghastighetsnätet i Sverige

Al-Ani, Ameen LU (2020) VTVL01 20191
Transport and Roads
Abstract (Swedish)
Sverige ämnar bygga sina höghastighetsbanor som beräknas vara i drift 2035. Höghastighetsnätet löser kapacitetsproblemet i framtiden, Sveriges miljö-och klimatmål kräver mer järnväg och höghastighetsnätet kan öka tillgängligheten till möjliga arbeten inom 45 min restid (SJ u.å.).

Många orter som ligger i närheten av den förslagna höghastighetsbanan önskar att ingå i höghastighetsnätet. De höga investeringskostnaderna är huvudorsaken till att andra kringliggande orter inte planeras att anslutas till höghastighetsnätet.

Det här arbetet syftar till att utöka höghastighetsnätets användningsområde. Detta genom att sammankoppla befintliga banor till höghastighetsnätet. Arbetet presenterar vidare olika åtgärder som minskar konventionella... (More)
Sverige ämnar bygga sina höghastighetsbanor som beräknas vara i drift 2035. Höghastighetsnätet löser kapacitetsproblemet i framtiden, Sveriges miljö-och klimatmål kräver mer järnväg och höghastighetsnätet kan öka tillgängligheten till möjliga arbeten inom 45 min restid (SJ u.å.).

Många orter som ligger i närheten av den förslagna höghastighetsbanan önskar att ingå i höghastighetsnätet. De höga investeringskostnaderna är huvudorsaken till att andra kringliggande orter inte planeras att anslutas till höghastighetsnätet.

Det här arbetet syftar till att utöka höghastighetsnätets användningsområde. Detta genom att sammankoppla befintliga banor till höghastighetsnätet. Arbetet presenterar vidare olika åtgärder som minskar konventionella nätets påverkan på höghastighetstrafiken ifall sammankoppling sker. Syftet med de föreslagna åtgärderna är att minimera förseningar och andra störningar som kan uppstå vid sammankoppling.

Rapporten är avgränsad till att konventionella nätet och höghastighetsnätet anslutas endast via förbindelserna:
• Växjö- Värnamo.
• Helsingborg- Hässleholm.

I arbetet utfördes en tvådimensionell riskanalys i syfte att studera vilken/vilka teknikområden som har störst riskvärde. Riskanalysmetoderna avgränsas på grund av de begränsade resurser författaren har tillgång till under arbetets genomgång. Riskanalysens kategorier avgränsas enbart till punktlighet. Riskanalysens objekt avgränsas till järnvägens infrastrukturs teknikområden. Riskanalysens dimensioner avgränsas till två dimensioner, i detta fall konsekvens och sannolikhet (tidsaspekten ignoreras).

En Multikriterieanalys används för att kunna jämföra olika utredningsalternativen som presenteras i arbetet i förhållande till jämförelsealternativen. I en MCA jämförs utredningsalternativen med hjälp av konfliktkritiker (Messina 2006).

Totalkostnader för generella åtgärderna som föreslås i arbetet avgränsas till grova uppskattningar.

Först undersöktes vilken/vilka aktörer som orsakar mest förseningar. Då framkom det att Trafikverkets infrastrukturanläggningar orsakar mest förseningar.
Sedan utfördes en riskanalys i syfte att studera vilken/vilka teknikområden som har störst riskvärde. Riskanalysen visar att teknikområde signal har högsta riskvärderingen bland alla teknikområden.

Delsystemet spårledning har högsta riskvärden bland alla delsystemen. Detta är på grund av den vanligaste fel som uppstår är överledning av isolerskarvar. Överledningen av isolerskarvar är fel som uppstår inom delsystemet spår som har en indirekt påverkan på delsystem spårledning.

Därefter söktes åtgärder som kan minska riskvärden genom att minska sannolikheten för delsystem spårledning.

Bland de åtgärderna som kan minska överledningsproblemet är:
• Rälsmaterielbyte till materiel med högre hållfastighet.
• Användning av icke magnetiska material för räl eller rälsändarna.
• Öka antal skarvar t.ex. införing av dubbla skarvar.
• Tåg med ”dammsugare”.
• Alternativa positioneringssystem såsom axelräknare och annan skarvfri fordonsdetektering.

Inom arbetet föreslås även andra generella åtgärder vilka minimerar riskvärden genom att inom alla teknikområden minska konsekvensvärderingen. De åtgärderna som presenteras är:
• Mötesspår med samtidig infart (med approximerad totalkostnad per förbindelse: 120–130 mkr)
• Dubbelspår (med approximerad totalkostnad per förbindelse: 5–8 mdkr)
• Dubbelspår med mötesspår (med approximerad totalkostnad per förbindelse: 5,5–8 mdr)

Arbetet visar att trafikverket är den största orsaken till förseningar. De flesta förseningar sker på grund av fel i infrastruktur. Teknikområde signal har högst riskvärde bland alla teknikområden. Delsystemet spårledning har högsta riskvärde bland alla delsystem.

Åtgärderna som minskar sannolikhetsvärdering för delsystemet spårledning kan vara av hög innovationsgrad, högkostnad eller högtid för implementering. Därför föreslås generella åtgärder som minskar konsekvensvärde inom alla teknikområden.

Primär åtgärd som rekommenderas är att bygga ut förbindelser till dubbelspåriga linjer. Beräknade kostnad är 11–15 mdkr för både förbindelserna. (Less)
Abstract
Sweden intends to build its high-speed railways, which are expected to be operational by 2035. The high-speed network solves the capacity problem in the future. Sweden's environmental and climate goals require more rail and the high-speed network can increase access to possible jobs within 45 minutes of travel time (SJ u.å.).

Many cities that are close to the proposed high-speed railway wish to be included in the high-speed network. The high investment cost is the main reason why other neighbouring locations are not planned to be connected to the high-speed network.

This report aims to expand the area of use of the high-speed network by adding Helsingborg and Växjö to the high-speed network stations list. But in this case, high-speed... (More)
Sweden intends to build its high-speed railways, which are expected to be operational by 2035. The high-speed network solves the capacity problem in the future. Sweden's environmental and climate goals require more rail and the high-speed network can increase access to possible jobs within 45 minutes of travel time (SJ u.å.).

Many cities that are close to the proposed high-speed railway wish to be included in the high-speed network. The high investment cost is the main reason why other neighbouring locations are not planned to be connected to the high-speed network.

This report aims to expand the area of use of the high-speed network by adding Helsingborg and Växjö to the high-speed network stations list. But in this case, high-speed railways should not be built between the above-mentioned locations. Instead Helsingborg and Växjö will be included in the high-speed network with the help of the already existing railways. This means that local train traffic and the high-speed network will be connected through the connections mentioned below.

The report is based on expanding the use of the high-speed network by connecting Sweden’s local train traffic and Sweden’s high-speed network only through these connections:
• Helsingborg- Hässleholm.
• Växjö- Värnamo.

Connections to Hässleholm and Värnamo are suitable to study since they are a part of the high-speed network (Trafikverket 2018).

In this thesis, a two-dimensional risk analysis was performed in order to study which technology areas have the highest risk value. Risk analysis methods are limited because of the limited resources the author has access to during the writing of this thesis. Risk analysis categories are limited to punctuality only. The risk analysis objects are limited to the technical infrastructure of the railway and the risk analysis dimensions are limited to two dimensions, in this case consistency and probability (the time aspect is ignored).

A Multi-criteria analysis is used to be able to compare different measures that are presented in this thesis to each other in relation to not implementing any measure at all. In an MCA measures are compared with the help of conflicting criteria (Messina 2006).

Total costs for the general measures proposed in the work are limited to rough estimates.

This connection between local train traffic and the high-speed network will affect the punctuality of the high-speed network, and that is what will be investigated in this work. After the investigation it was concluded that the Swedish Transport Administration (Trafikverket) causes the most delays and that faults that occur within the railway infrastructure cause the most delays.

A risk analysis is then performed to know which technical field has the highest risk value. According to the risk analysis, the technical field: the signalling system has the highest risk rating among all the technical fields.

The subsystem: track circuit system has the highest risk values among all subsystems. This is because of the most common faults that occur is overflow of insulation joints that occur within the subsystem: track that have indirectly impacts the subsystem: track circuit system.

Specific measures are proposed that can reduce risk values by reducing the probability of failure occurrence within the both subsystems: track and track circuit system.

Among the measures that can reduce the conduction problem are:
• Rail material change to material with higher strength.
• Use of non-magnetic material for rails.
• Increase number of joints e.g. insertion of double joints.
• Train with vacuum cleaner, without magnet near the joints.
• Alternative track circuit system implementation such as: Axle counters and joint-free train detection.

Other general measures are proposed that minimize the risk value by minimizing the consequences after fail occurrence. The measures presented are:
• Meeting track with simultaneous entrance (with an approximated total cost per connection: 120–130 Mkr).
• Double track (with an approximated total cost per connection: 5–8 Bnkr)
• Double track with meeting track (with an approximated total cost per connection: 5,5–8 Bnkr)

This thesis shows that the Swedish Transport Administration is the leading cause of delays. Most delays occur due to infrastructure failures. The technical field: the signalling system has the highest risk value among all technology areas. The subsystem: track circuit system has the highest risk values among all subsystems.

The measures that reduce the likelihood evaluation for the traceability subsystem can be of a high degree of innovation, high cost or high implementation time. Therefore, general measures are proposed that reduce the impact value in all technology areas.

The primary measure that is recommended is to build a parallel track to the already existing track. The estimated cost is 11–15bn SEK for both connections. (Less)
Please use this url to cite or link to this publication:
author
Al-Ani, Ameen LU
supervisor
organization
alternative title
Expand the use of the high-speed network in Sweden
course
VTVL01 20191
year
type
M3 - Professional qualifications ( - 4 Years)
subject
keywords
Höghastighetsjärnväg, riskanalys, signal, åtgärd, Helsingborg, Växjö, Hässleholm, Värnamo.
report number
ISRN LUTHBG/THID-20/5590
ISSN
1651-2197
language
Swedish
id
9001486
date added to LUP
2020-01-24 13:01:48
date last changed
2020-02-07 08:56:14
@misc{9001486,
  abstract     = {{Sweden intends to build its high-speed railways, which are expected to be operational by 2035. The high-speed network solves the capacity problem in the future. Sweden's environmental and climate goals require more rail and the high-speed network can increase access to possible jobs within 45 minutes of travel time (SJ u.å.).

Many cities that are close to the proposed high-speed railway wish to be included in the high-speed network. The high investment cost is the main reason why other neighbouring locations are not planned to be connected to the high-speed network.

This report aims to expand the area of use of the high-speed network by adding Helsingborg and Växjö to the high-speed network stations list. But in this case, high-speed railways should not be built between the above-mentioned locations. Instead Helsingborg and Växjö will be included in the high-speed network with the help of the already existing railways. This means that local train traffic and the high-speed network will be connected through the connections mentioned below.

The report is based on expanding the use of the high-speed network by connecting Sweden’s local train traffic and Sweden’s high-speed network only through these connections:
• Helsingborg- Hässleholm.
• Växjö- Värnamo.

Connections to Hässleholm and Värnamo are suitable to study since they are a part of the high-speed network (Trafikverket 2018).

In this thesis, a two-dimensional risk analysis was performed in order to study which technology areas have the highest risk value. Risk analysis methods are limited because of the limited resources the author has access to during the writing of this thesis. Risk analysis categories are limited to punctuality only. The risk analysis objects are limited to the technical infrastructure of the railway and the risk analysis dimensions are limited to two dimensions, in this case consistency and probability (the time aspect is ignored).

A Multi-criteria analysis is used to be able to compare different measures that are presented in this thesis to each other in relation to not implementing any measure at all. In an MCA measures are compared with the help of conflicting criteria (Messina 2006).

Total costs for the general measures proposed in the work are limited to rough estimates.

This connection between local train traffic and the high-speed network will affect the punctuality of the high-speed network, and that is what will be investigated in this work. After the investigation it was concluded that the Swedish Transport Administration (Trafikverket) causes the most delays and that faults that occur within the railway infrastructure cause the most delays.

A risk analysis is then performed to know which technical field has the highest risk value. According to the risk analysis, the technical field: the signalling system has the highest risk rating among all the technical fields.

The subsystem: track circuit system has the highest risk values among all subsystems. This is because of the most common faults that occur is overflow of insulation joints that occur within the subsystem: track that have indirectly impacts the subsystem: track circuit system.

Specific measures are proposed that can reduce risk values by reducing the probability of failure occurrence within the both subsystems: track and track circuit system.
 
Among the measures that can reduce the conduction problem are:
• Rail material change to material with higher strength.
• Use of non-magnetic material for rails.
• Increase number of joints e.g. insertion of double joints.
• Train with vacuum cleaner, without magnet near the joints.
• Alternative track circuit system implementation such as: Axle counters and joint-free train detection.

Other general measures are proposed that minimize the risk value by minimizing the consequences after fail occurrence. The measures presented are:
• Meeting track with simultaneous entrance (with an approximated total cost per connection: 120–130 Mkr).
• Double track (with an approximated total cost per connection: 5–8 Bnkr)
• Double track with meeting track (with an approximated total cost per connection: 5,5–8 Bnkr)

This thesis shows that the Swedish Transport Administration is the leading cause of delays. Most delays occur due to infrastructure failures. The technical field: the signalling system has the highest risk value among all technology areas. The subsystem: track circuit system has the highest risk values among all subsystems.

The measures that reduce the likelihood evaluation for the traceability subsystem can be of a high degree of innovation, high cost or high implementation time. Therefore, general measures are proposed that reduce the impact value in all technology areas.

The primary measure that is recommended is to build a parallel track to the already existing track. The estimated cost is 11–15bn SEK for both connections.}},
  author       = {{Al-Ani, Ameen}},
  issn         = {{1651-2197}},
  language     = {{swe}},
  note         = {{Student Paper}},
  title        = {{Utöka användningsområdet av höghastighetsnätet i Sverige}},
  year         = {{2020}},
}