Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Evaluation of internal dosimetry for 225- Ac using one single measurement based on 111-In imaging

Curkic, Selma LU (2021) MSFT01 20202
Medical Physics Programme
Abstract
Background and aim: There is a high interest in determining the absorbed dose in tumors and organs for various radiotherapy cancer treatments. Due to limitations in today's methods of determining the patient specific absorbed dose it is usually not proceeded clinically. The methods are time consuming but also trying for patients, since it depends on several imaging procedures at different times during a time period of about seven days p.i. Therefore the aim of this thesis is to find a new method that is not as challenging for the clinic and patients, yet is as effective as the current one. The new method (1-point method) is based on single time point dosimetry for a newly developed therapy using the alpha emitting 225Ac with the help of... (More)
Background and aim: There is a high interest in determining the absorbed dose in tumors and organs for various radiotherapy cancer treatments. Due to limitations in today's methods of determining the patient specific absorbed dose it is usually not proceeded clinically. The methods are time consuming but also trying for patients, since it depends on several imaging procedures at different times during a time period of about seven days p.i. Therefore the aim of this thesis is to find a new method that is not as challenging for the clinic and patients, yet is as effective as the current one. The new method (1-point method) is based on single time point dosimetry for a newly developed therapy using the alpha emitting 225Ac with the help of 111In for imaging.

Method: The work was divided into two parts. The first one consisted of making time activity concentration curves (TACC), based on given biokinetic data, for each organ being examined. The curves were explained either as a bi-exponential curve with uptake or without uptake. Parameters given from these curves were then used to calculate the true time integrated activity concentrations (TIAC) used as reference data. Afterwards CT-based phantoms were created after real patient data, where data from five patients was used. By using the Monte-Carlo based program SIMIND, SPECT simulations were performed at four different time points for all phantoms to calculate the TIAC with the current method (4-point method), called test data. The 4-point method is based on fitting a curve to activities quantified from four imaging procedures at different time points over the course of a week, and then integrating it. For the second part, a derivation was made to find the optimal time point (topt) when the single SPECT/CT measurement should be made to still obtain reasonable results while minimizing the uncertainties. Derivation of topt resulted in topt=1/(λ*Ac), where λ*Ac is the mean effective decay constant for each individual organ for 225Ac. Following this derivation different organs should have different optimal imaging times, since they have different biological decay constants. Therefore, simulations were performed at 96, 120 and 144 hours p.i. to test this theory. The TIAC`s obtained were then compared to reference data and the test data calculated with the 4-point method. TIAC`s for the 1-point method were given by integrating a mono-exponential curve based on the activity quantified from the single time point and a mean effective decay constant. Since 111In is our imaging radionuclide the TIAC`s were first calculated for 111In and then re-calculated for 225Ac, except for the 1-point method where the TIAC`s for 225Ac were given straight away.

Results and conclusion: The results show that, for majority of the organs, the test data received with the 1-point method deviates with -4 % to 12 % from reference data for later measurements p.i. while the kidneys deviate with around 31 %. One reason being their low activity concentration around 144 hours p.i. For earlier p.i. measurements it lies around 6 % to 12 %, and for the kidneys 27 %. Thus organs with later topt had lower uncertainties at 144 hours p.i. Those with an earlier optimal imaging time, such as the kidneys, had lower uncertainties at 96 hours p.i. Similar percentages are given when deviations between the 4-point method test data and reference data are produced. Results also show that the TIAC`s received with the 1-point method test data are overestimated when compared directly to the 4-point method test data. For later p.i. measurements they deviate with about 1 % to 5 %, while for earlier p.i. measurements they deviate with about 0 % to 13 %. Therefore, depending on what accuracy one is searching for and the resources available to determine the absorbed doses, both the 4-point method and the 1-point method are successful. (Less)
Popular Abstract (Swedish)
Dosimetri är läran om hur strålning deponerar eller frigör sin energi i vävnad samt hur mängden energi som avgetts kan bestämmas genom mätning eller beräkning. Detta används vid t.ex. interna strålbehandlingar där man genom att injicera radioaktivitet vill behandla vissa typer av tumörer och då vill undersöka hur stor mängd av radioaktiviteten man injicerat som kommer tas upp och bestråla olika organ. Genom att diagnostisera kan vi se hur radioaktiviteten har fördelat sig i kroppen, detta kan utföras med en single photon emission computed tomography (SPECT) som utanför kroppen mäter aktivitetsfördelningen personen har innanför kroppen. Den storhet man använder sig av för att koppla cancer behandlingar till den radiobiologiska effekten som... (More)
Dosimetri är läran om hur strålning deponerar eller frigör sin energi i vävnad samt hur mängden energi som avgetts kan bestämmas genom mätning eller beräkning. Detta används vid t.ex. interna strålbehandlingar där man genom att injicera radioaktivitet vill behandla vissa typer av tumörer och då vill undersöka hur stor mängd av radioaktiviteten man injicerat som kommer tas upp och bestråla olika organ. Genom att diagnostisera kan vi se hur radioaktiviteten har fördelat sig i kroppen, detta kan utföras med en single photon emission computed tomography (SPECT) som utanför kroppen mäter aktivitetsfördelningen personen har innanför kroppen. Den storhet man använder sig av för att koppla cancer behandlingar till den radiobiologiska effekten som strålningen orsakar är ofta absorberad dos, vilken definieras som deponerad energi per massenhet. Att bestämma den absorberade dosen är tidskrävande och påfrestande för klinikerna, då det kräver att flera SPECT-bildtagningar sker under en viss tidsperiod. Därför är syftet med det här arbetet att förenkla metoden för att bestämma den absorberade dosen, genom att enbart basera den på en enda SPECT-bildtagning.

Detta arbete är baserat på en typ av alfa-terapi, där man kan behandla tumörer genom att binda en alfa-strålare till en antikropp som i sin tur kan binda till olika tumörer. En alfa-strålare är en typ av radionuklid som sönderfaller genom att emittera en alfa-partikel. I det här fallet används 225Actinium (225Ac) för att leverera alpha-partiklarna. Alfa-partiklar är duktiga på att orsaka dubbelsträngsbrått i vårt DNA, vilket är ett effektivt sätt att döda celler på om inte cellen lyckas reparera dubbelsträngsbråttet. På så sätt är det viktigt att se till att så mycket som möjligt av den injicerade radioaktiviteten bestrålar enbart tumörerna och så lite som möjligt bestrålar frisk vävnad, då vi inte vill orsaka någon skada på cellerna i våra friska organ. Alfa-partiklar kommer avge all sin energi i vävnaden den passerar igenom, därför kan inte SPECT-kameran mäta fördelningen av 225Ac. Vi får istället injicera ytterligare en radionuklid som sönderfaller med gammafotoner, i det här fallet använde vi oss av 111Indium (111In). Gammafotoner avger oftast inte sin energi i vävnaden där sönderfallet skedde utan kan ta sig utanför kroppen vilket gör att vi kan mäta på det.

Genom att mäta vid flera olika tidpunkter över en viss tid kan vi bestämma hur mycket radioaktivitet vi har kvar i kroppen vid de olika tillfällena. Mängden dos ett organ får ta beror bland annat på hur länge det blir bestrålat. Desto fler mättidpunkter man har desto mer korrekt blir dosberäkningen, då vi verkligen kan se hur mycket radioaktivitet organen tar upp och hur länge det är kvar i organet. Genom att anpassa en kurva till dessa mättidpunkter får vi en beskrivning av det specifika organets upptag och utsöndring av radioaktiviteten. Målet är dock att med en enda mättidpunkt kunna bestämma det ovannämnda och fortfarande få liknande resultat. Det går att hitta när mättidpunkten ska ske så att beräkningen av den absorberade dosen som görs baserat på en tidpunkt stämmer överens med den absorberade dosen baserat på flera tidpunkter.

Resultatet av det här arbetet visar att det går att beräkna absorberad dos med en enda mättidpunkt. Genom att ta fram den optimala tidpunkten när mätningen ska ske och sedan beräkna dosen från den får man liknande resultat som om den absorberade dosen beräknats med flera mättidpunkter. Självfallet är resultaten bättre då flera mättidpunkter används, men med tanke på hur mycket resurser som besparas med den nya metod kan den fortfarande vara lyckad och användbar. (Less)
Please use this url to cite or link to this publication:
author
Curkic, Selma LU
supervisor
organization
course
MSFT01 20202
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
9043414
date added to LUP
2021-04-28 07:35:47
date last changed
2021-04-28 07:35:47
@misc{9043414,
  abstract     = {{Background and aim: There is a high interest in determining the absorbed dose in tumors and organs for various radiotherapy cancer treatments. Due to limitations in today's methods of determining the patient specific absorbed dose it is usually not proceeded clinically. The methods are time consuming but also trying for patients, since it depends on several imaging procedures at different times during a time period of about seven days p.i. Therefore the aim of this thesis is to find a new method that is not as challenging for the clinic and patients, yet is as effective as the current one. The new method (1-point method) is based on single time point dosimetry for a newly developed therapy using the alpha emitting 225Ac with the help of 111In for imaging. 

 Method: The work was divided into two parts. The first one consisted of making time activity concentration curves (TACC), based on given biokinetic data, for each organ being examined. The curves were explained either as a bi-exponential curve with uptake or without uptake. Parameters given from these curves were then used to calculate the true time integrated activity concentrations (TIAC) used as reference data. Afterwards CT-based phantoms were created after real patient data, where data from five patients was used. By using the Monte-Carlo based program SIMIND, SPECT simulations were performed at four different time points for all phantoms to calculate the TIAC with the current method (4-point method), called test data. The 4-point method is based on fitting a curve to activities quantified from four imaging procedures at different time points over the course of a week, and then integrating it. For the second part, a derivation was made to find the optimal time point (topt) when the single SPECT/CT measurement should be made to still obtain reasonable results while minimizing the uncertainties. Derivation of topt resulted in topt=1/(λ*Ac), where λ*Ac is the mean effective decay constant for each individual organ for 225Ac. Following this derivation different organs should have different optimal imaging times, since they have different biological decay constants. Therefore, simulations were performed at 96, 120 and 144 hours p.i. to test this theory. The TIAC`s obtained were then compared to reference data and the test data calculated with the 4-point method. TIAC`s for the 1-point method were given by integrating a mono-exponential curve based on the activity quantified from the single time point and a mean effective decay constant. Since 111In is our imaging radionuclide the TIAC`s were first calculated for 111In and then re-calculated for 225Ac, except for the 1-point method where the TIAC`s for 225Ac were given straight away. 

Results and conclusion: The results show that, for majority of the organs, the test data received with the 1-point method deviates with -4 % to 12 % from reference data for later measurements p.i. while the kidneys deviate with around 31 %. One reason being their low activity concentration around 144 hours p.i. For earlier p.i. measurements it lies around 6 % to 12 %, and for the kidneys 27 %. Thus organs with later topt had lower uncertainties at 144 hours p.i. Those with an earlier optimal imaging time, such as the kidneys, had lower uncertainties at 96 hours p.i. Similar percentages are given when deviations between the 4-point method test data and reference data are produced. Results also show that the TIAC`s received with the 1-point method test data are overestimated when compared directly to the 4-point method test data. For later p.i. measurements they deviate with about 1 % to 5 %, while for earlier p.i. measurements they deviate with about 0 % to 13 %. Therefore, depending on what accuracy one is searching for and the resources available to determine the absorbed doses, both the 4-point method and the 1-point method are successful.}},
  author       = {{Curkic, Selma}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Evaluation of internal dosimetry for 225- Ac using one single measurement based on 111-In imaging}},
  year         = {{2021}},
}