Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Towards a Cooper pair splitter in InAs nanowires with crystal-phase defined quantum dots

Olausson, Louise LU (2022) PHYM01 20221
Solid State Physics
Faculty of Engineering, LTH
Abstract
Cooper pair splitting (CPS) is a process in which the two spin-entangled electrons of a Cooper pair in a superconductor are split into two spatially separated electrons. If the separated electrons are still entangled, CPS can be studied to increase the knowledge of non-locality in quantum systems. This thesis is a first step towards the realization of CPS in InAs nanowires with crystal-phase defined quantum dots. Previous studies with these nanowires have shown that it is possible to control the spin-ground state with the help of small electric and magnetic fields. If CPS also is possible in these nanowires, this may in the future lead to new opportunities for spin-resolved CPS, which opens a route towards a test of the... (More)
Cooper pair splitting (CPS) is a process in which the two spin-entangled electrons of a Cooper pair in a superconductor are split into two spatially separated electrons. If the separated electrons are still entangled, CPS can be studied to increase the knowledge of non-locality in quantum systems. This thesis is a first step towards the realization of CPS in InAs nanowires with crystal-phase defined quantum dots. Previous studies with these nanowires have shown that it is possible to control the spin-ground state with the help of small electric and magnetic fields. If CPS also is possible in these nanowires, this may in the future lead to new opportunities for spin-resolved CPS, which opens a route towards a test of the Einstein-Podolsky-Rosen (EPR) paradox and Bell's inequality.

The nanowires studied in this thesis had a shell of GaSb to improve contact alignment. Good contact alignment was important in this project since the superconducting contact must be placed very close to the quantum dots, in order for the superconductivity to be induced into the nanowire via the proximity effect. The shell of GaSb was removed prior to metal evaporation by a wet-etch in the developer MF319. To improve the quality of the InAs-Ti/Al contact interface, two different processing schemes were developed and compared. The quality of the contact interface became better if the whole GaSb shell was removed before any other process step than if the GaSb was removed in two separate steps. It was also found that water also can be used to etch GaSb.

The search for experimental signatures of CPS was performed at mK temperatures in a dilution refrigerator. A CPS signal can potentially be very weak and difficult to isolate from a noisy background. Therefore, several comparisons between standard DC measurements and AC measurements with a lock-in amplifier were performed, where one research question was to determine which measurement technique is most suitable for detecting CPS. One important topic of study was finding out how a setup can generate non-local signals. This can occur in DC measurements due to a DC offset between amplifiers, as is shown in this work. The non-local signal will look like a CPS signal but can remain even when the contact is no longer superconducting.

Some of the advantages of DC measurements are instead that they are, in general, faster and simpler to perform since they do not need significant settings optimization. AC measurements, on the other hand, require that settings such as reference frequency and root-mean square voltage are selected appropriately. These settings were most likely not well selected for the various measurements performed in this thesis since the AC measurements resulted in broader features and lower signals than the corresponding DC measurements. A conclusion from this thesis is that it can be difficult to make good AC measurements, but they have the advantage of eliminating the problem with DC offsets and should therefore be used when studying CPS to reduce the risk of other non-local signals.

The ultimate goal of this thesis was to observe experimental signs of CPS, but no such signs could be confirmed. The primary reason for this was probably a too long distance between the quantum dots. The width of the superconducting contact of 400 nm was likely too wide compared to the coherence length in diffusive aluminum nanostructures which typically lie in the range of 100 to 200 nm. (Less)
Popular Abstract (Swedish)
Det är intressant att studera om de spinn-sammanflätade elektronerna i ett Cooperpar kan delas upp, eftersom detta förutspås kunna användas när man bygger kvantdatorer. En kvantdator kan lösa vissa problem som vanliga, klassiska datorer inte kan och kan dessutom lösa en del problem snabbare. En ökad kunskap om kvantfenomen på ett fundamentalt plan är en förutsättning för vidare kvantteknologisk utveckling, vilket på sikt kan bidra till nya tillämpningar.

Spinn är en egenskap hos en elektron som endast kan anta två olika värden, spinn upp eller spinn ned. Två elektroner kan vara spinn-sammanflätade, vilket betyder att om man mäter spinnet för den ena elektronen kan man omedelbart bestämma spinnet för den andra elektronen. Ett Cooperpar... (More)
Det är intressant att studera om de spinn-sammanflätade elektronerna i ett Cooperpar kan delas upp, eftersom detta förutspås kunna användas när man bygger kvantdatorer. En kvantdator kan lösa vissa problem som vanliga, klassiska datorer inte kan och kan dessutom lösa en del problem snabbare. En ökad kunskap om kvantfenomen på ett fundamentalt plan är en förutsättning för vidare kvantteknologisk utveckling, vilket på sikt kan bidra till nya tillämpningar.

Spinn är en egenskap hos en elektron som endast kan anta två olika värden, spinn upp eller spinn ned. Två elektroner kan vara spinn-sammanflätade, vilket betyder att om man mäter spinnet för den ena elektronen kan man omedelbart bestämma spinnet för den andra elektronen. Ett Cooperpar består av två spinn-sammanflätade elektroner med motsatt spinn och finns i supraledande material under en viss kritisk temperatur. I detta arbete undersöktes om elektronerna i ett sådant par kunde delas upp genom att en ström av Cooperpar leddes från en supraledande kontakt till en nanotråd med två kvantprickar, där vardera kvantprick var i kontakt med en normal ledare.

Två elektroner tycker inte om att vara nära varandra eftersom de har samma laddning. I en kvantprick tvingas elektronerna att vara instängda i ett väldigt litet område, vilket gör att de inte vill åka igenom en kvantprick samtidigt. Därför bidrar kvantprickarna till att dela upp elektronerna i Cooperparet.

Nanotrådar är små nålliknande strukturer med en diameter på 10-100 nanometer och en längd på några få mikrometer och var i detta arbete gjorda av halvledarmaterialet indiumarsenid (InAs) med ett skal av galliumantimonid (GaSb). I nanotrådarna fanns två kvantprickar som uppstod på grund av att nanotråden bestod av två olika kristallstrukturer som kallas wurtzit och zinkblände. GaSb växer endast på InAs av zinkblände vilket gjorde det enkelt att se var segmenten av wurtzit fanns. Detta är viktigt eftersom den supraledande kontakten måste placeras mycket nära kvantprickarna. Skalet av GaSb togs bort av kemikalien MF319 före kontakterna lades på. De normala kontakterna tillverkades av nickel/guld (Ni/Au) och den supraledande kontakten av titan/aluminium (Ti/Al). Det tillverkades också en sidokontakt av Ti/Al.

För att få en bra kvalité på ytan mellan den supraledande kontakten och nanotråden jämfördes två olika processmetoder. Det visade sig att om hela GaSb-skalet på nanotråden togs bort före något annat processteg, blev kvaliteten på kontaktytan bättre än om skalet togs bort i två separata steg. En annan slutsats från projektet var att även vatten kan användas för att ta bort GaSb, vilket är positivt eftersom det är en renare, billigare och enklare process än att använda MF319.

Cooperpar uppstår i supraledande material vid väldigt låga temperaturer. Detta är anledningen till varför de elektriska mätningarna i detta examensarbete utfördes i en anordning som håller temperaturen vid 50 mK, vilket är mer än 1000 gånger kallare än rumstemperatur. Om det upptäcks en strömökning i de två normala kontakterna när det går en ström samtidigt genom båda kvantprickarna, kan detta bero på att elektronerna i Cooparparet har delats upp och separerats till varsin kvantprick. En sådan signal kan dock vara väldigt svag och svår att upptäcka på grund av brus. I detta projekt har därför olika mätmetoder, som antingen använder likström eller växelström, jämförts, för att ta reda på vilken mätmetod som är mest lämpliga att använda.

En viktig upptäckt i detta arbete var att påvisa risken för falska signaler som kan uppstå under likströmsmätningarna men som inte beror på att elektronerna i ett Cooperpar har delats upp. Dessa signaler kan uppstå på grund av en spänningsskillnad mellan olika komponenter i kretsen som bidrar till att strömmen genom en av kvantprickarna påverkar strömmen genom den andra kvantpricken. Någon signal som skulle tyda på en uppdelning av elektronerna i ett Cooperpar kunde dock inte ses. Anledningen till detta är troligtvis att avståndet mellan kvantprickarna i nanotråden var för stort, eftersom elektronerna förlorar sin sammanflätning med varandra efter en tid. (Less)
Please use this url to cite or link to this publication:
author
Olausson, Louise LU
supervisor
organization
course
PHYM01 20221
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Cooper pair splitter, quantum dot, nanowire, superconductivity, InAs, crystal-phase
language
English
id
9090019
date added to LUP
2022-06-17 14:16:54
date last changed
2022-06-17 14:16:54
@misc{9090019,
  abstract     = {{Cooper pair splitting (CPS) is a process in which the two spin-entangled electrons of a Cooper pair in a superconductor are split into two spatially separated electrons. If the separated electrons are still entangled, CPS can be studied to increase the knowledge of non-locality in quantum systems. This thesis is a first step towards the realization of CPS in InAs nanowires with crystal-phase defined quantum dots. Previous studies with these nanowires have shown that it is possible to control the spin-ground state with the help of small electric and magnetic fields. If CPS also is possible in these nanowires, this may in the future lead to new opportunities for spin-resolved CPS, which opens a route towards a test of the Einstein-Podolsky-Rosen (EPR) paradox and Bell's inequality.

The nanowires studied in this thesis had a shell of GaSb to improve contact alignment. Good contact alignment was important in this project since the superconducting contact must be placed very close to the quantum dots, in order for the superconductivity to be induced into the nanowire via the proximity effect. The shell of GaSb was removed prior to metal evaporation by a wet-etch in the developer MF319. To improve the quality of the InAs-Ti/Al contact interface, two different processing schemes were developed and compared. The quality of the contact interface became better if the whole GaSb shell was removed before any other process step than if the GaSb was removed in two separate steps. It was also found that water also can be used to etch GaSb.

The search for experimental signatures of CPS was performed at mK temperatures in a dilution refrigerator. A CPS signal can potentially be very weak and difficult to isolate from a noisy background. Therefore, several comparisons between standard DC measurements and AC measurements with a lock-in amplifier were performed, where one research question was to determine which measurement technique is most suitable for detecting CPS. One important topic of study was finding out how a setup can generate non-local signals. This can occur in DC measurements due to a DC offset between amplifiers, as is shown in this work. The non-local signal will look like a CPS signal but can remain even when the contact is no longer superconducting.

Some of the advantages of DC measurements are instead that they are, in general, faster and simpler to perform since they do not need significant settings optimization. AC measurements, on the other hand, require that settings such as reference frequency and root-mean square voltage are selected appropriately. These settings were most likely not well selected for the various measurements performed in this thesis since the AC measurements resulted in broader features and lower signals than the corresponding DC measurements. A conclusion from this thesis is that it can be difficult to make good AC measurements, but they have the advantage of eliminating the problem with DC offsets and should therefore be used when studying CPS to reduce the risk of other non-local signals.

The ultimate goal of this thesis was to observe experimental signs of CPS, but no such signs could be confirmed. The primary reason for this was probably a too long distance between the quantum dots. The width of the superconducting contact of 400 nm was likely too wide compared to the coherence length in diffusive aluminum nanostructures which typically lie in the range of 100 to 200 nm.}},
  author       = {{Olausson, Louise}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Towards a Cooper pair splitter in InAs nanowires with crystal-phase defined quantum dots}},
  year         = {{2022}},
}