Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Evaluation of the treatment planning system decimal ElectronRT and custom-made bolus for FLASH-irradiation

Coskun, Mizgin (2022) MSFT01 20212
Medical Physics Programme
Abstract
Introduction: The novel external beam therapy technique using ultra-high dose rates known as FLASH has become known for its normal tissue sparing effect. Currently in Lund, veterinary clinical trials are carried out on canine patients using electrons with ultra- high dose rates. By implementing a treatment planning system for FLASH-irradiation, the dose distribution can be visualized and the gantry and the couch angle can be optimized. Moreover, an optimized thickness bolus can be added to the treatment plan for a more conformal and homogeneous dose distribution inside the patient.

The aim of this master thesis is to evaluate the accuracy of the decimal ElectronRT, eRT, treatment planning system by .decimal for the purpose of... (More)
Introduction: The novel external beam therapy technique using ultra-high dose rates known as FLASH has become known for its normal tissue sparing effect. Currently in Lund, veterinary clinical trials are carried out on canine patients using electrons with ultra- high dose rates. By implementing a treatment planning system for FLASH-irradiation, the dose distribution can be visualized and the gantry and the couch angle can be optimized. Moreover, an optimized thickness bolus can be added to the treatment plan for a more conformal and homogeneous dose distribution inside the patient.

The aim of this master thesis is to evaluate the accuracy of the decimal ElectronRT, eRT, treatment planning system by .decimal for the purpose of implementing the eRT treat- ment planning system in future FLASH-irradiation treatments. In addition, the goal is to employ a custom-made optimized thickness bolus to a treatment plan inside the treatment planning system to determine if the treatment can be made more conformal. The custom- made optimized thickness bolus is provided by the treatment planning system

Material & Methods: Firstly, percentage depth dose curves and dose profiles were mea- sured in a solid water phantom for different field sizes and at a source-to-surface distance (SSD) = 70 cm. The data was used to create a model of the modified linear accelerator used for FLASH-irradiation in the treatment planning system. Then, the model of the modified linear accelerator was used to create treatment plans for a solid water and an Alderson phantom. An SSD of 70 cm could not be used to create treatment plans due to a current limitation of the system. Hence, only an SSD of 100 cm was used and the plans were evaluated by new phantom measurements. Lastly, an optimized thickness bo- lus was added to the Alderson phantom treatment plan. Then, a new measurement on the Alderson phantom was made using the custom-made bolus with optimized thickness. The measurement was compared to the calculated dose profile exported from the treat- ment planning system.

Results: The identical repeated measurements of the percentage depth dose at SSD = 70 cm had their highest deviation values around 3%, except the percentage depth dose curve for the field size d = 3 cm. The comparison of the phantom measurements at SSD
= 100 cm and the exported data from the treatment planning system showed good agree- ment. Although some differences could be seen for large field sizes, the deviation values of the full-width at half-maximum (FWHM) were not higher than 3%. The bolus mea- surement verified that a peak in dose, previously seen in measurements with no bolus, was effectively removed. Despite some differences that could be seen visually between the measured inline beam dose profile in Alderson phantom and the exported beam dose profile from the treatment planning system, the deviation value of the FWHM was not higher than 2%.

Conclusion: The eRT treatment planning system was evaluated and phantom measure- ments were performed for comparison purposes. Although the results indicate good agreement, further measurements are needed to verify the accuracy of the eRT treatment planning system at SSD = 70 cm, as the model data are based on an SSD = 70 cm. The results using optimized thickness bolus seem promising although further measurements are needed. (Less)
Popular Abstract
Strålbehandling ges vid behandling av tumörer för att eliminera tumörceller och bota can- cer. 30% av all cancer botas med strålbehandling och 50% av alla cancerpatienter får minst en strålbehandling. Vid strålbehandling överförs hög energi till tumörceller så att bindningarna som håller ihop DNA-molekyler bryts och på så sätt orsakas skada. Dock uppstår skada inte endast i tumörceller utan även i frisk vävnad, även om frisk vävnad har bättre reperationsförmåga jämfört med tumörceller.Vid strålbehandling försöker man up- pnå en så konform dos som möjligt för att minska skada i normalvävnad, vilket innebär att strålningen riktas mot tumören medan man försöker undvika känslig frisk vävnad. Dock är det omöjligt att helt undvika att stråla och... (More)
Strålbehandling ges vid behandling av tumörer för att eliminera tumörceller och bota can- cer. 30% av all cancer botas med strålbehandling och 50% av alla cancerpatienter får minst en strålbehandling. Vid strålbehandling överförs hög energi till tumörceller så att bindningarna som håller ihop DNA-molekyler bryts och på så sätt orsakas skada. Dock uppstår skada inte endast i tumörceller utan även i frisk vävnad, även om frisk vävnad har bättre reperationsförmåga jämfört med tumörceller.Vid strålbehandling försöker man up- pnå en så konform dos som möjligt för att minska skada i normalvävnad, vilket innebär att strålningen riktas mot tumören medan man försöker undvika känslig frisk vävnad. Dock är det omöjligt att helt undvika att stråla och skada frisk vävnad.

Så tidigt som 1959 upptäcktes fördelen med att leverera strålningen under en mycket kort tid – några få millisekunder, av Dewey and Boag. De observerade en högre överlev- nad hos bakterier som blev bestrålade med hög doshastighet jämfört med bakterier som blev bestrålade med låg doshastighet. Dock, dröjde det 55 år innan denna effekt återigen blev aktuell. År 2014 refererades bestrålning med ultrahög doshastighet som FLASH- radioterapi och det rapporterades om att FLASH-radioterapi kan användas för behandling av lungtumörer med total respons och minskade biverkningar.

Den besparande effekten uppstår när strålningen ges under en mycket kort tid, delar av en sekund, och medför bättre skoning av normalvävnad. Strålbehandling med FLASH har hittills endast provats på en enda människa med goda resultat i form av milda biverkningar. Genom att implementera FLASH kliniskt önskas framtida strålbehandlingar ge mindre biverkan. Alternativt, spekuleras det om att högre stråldoser kan ges till patienter för att bota dem fullständigt då stråldosen som ges idag begränsas av biverkningar.

Vid strålbehandling används det ett dosplaneringssystem. I ett dosplaneringssystem kan dos till olika volymer såsom riskorgan och tumörer simuleras, samt kan en visualisering av dosfördelningen i patient fås och olika vinklar för strålleverasen kan väljas för att op- timera dosfördelningen så mycket som möjligt. I vissa fall användes även ett bolus som placeras på patients hud, vilket är av vävnadsliknande material. Syftet med boluset är att höja dosen till ytan och att åstadkomma en jämn bestrålad volym i tumören. Tjockleken på boluset kan väljas för att styra hur djupt dosen når i vävnaden.

I detta arbete utvärderades dosplaneringssystemet decimal Electron RT, eRT, från .decimal. Dessutom, utvärderas ett bolus med optimerad tjocklek, dvs. ett bolus där tjockleken varierar över ytan så att konformiteten maximeras, på ett skall-fantom för att se om dos- fördelningen kunde blir mer homogen och konform. Resultaten visade att dosfördelnin- gen var förbättrad, dock krävs fler mätningar för att avgöra hur väl dosplaneringsystemet simulerar den verkliga levererade FLASH-dosen. (Less)
Please use this url to cite or link to this publication:
author
Coskun, Mizgin
supervisor
organization
course
MSFT01 20212
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
9099260
date added to LUP
2022-09-03 14:51:38
date last changed
2022-09-03 14:51:38
@misc{9099260,
  abstract     = {{Introduction: The novel external beam therapy technique using ultra-high dose rates known as FLASH has become known for its normal tissue sparing effect. Currently in Lund, veterinary clinical trials are carried out on canine patients using electrons with ultra- high dose rates. By implementing a treatment planning system for FLASH-irradiation, the dose distribution can be visualized and the gantry and the couch angle can be optimized. Moreover, an optimized thickness bolus can be added to the treatment plan for a more conformal and homogeneous dose distribution inside the patient.

The aim of this master thesis is to evaluate the accuracy of the decimal ElectronRT, eRT, treatment planning system by .decimal for the purpose of implementing the eRT treat- ment planning system in future FLASH-irradiation treatments. In addition, the goal is to employ a custom-made optimized thickness bolus to a treatment plan inside the treatment planning system to determine if the treatment can be made more conformal. The custom- made optimized thickness bolus is provided by the treatment planning system

Material & Methods: Firstly, percentage depth dose curves and dose profiles were mea- sured in a solid water phantom for different field sizes and at a source-to-surface distance (SSD) = 70 cm. The data was used to create a model of the modified linear accelerator used for FLASH-irradiation in the treatment planning system. Then, the model of the modified linear accelerator was used to create treatment plans for a solid water and an Alderson phantom. An SSD of 70 cm could not be used to create treatment plans due to a current limitation of the system. Hence, only an SSD of 100 cm was used and the plans were evaluated by new phantom measurements. Lastly, an optimized thickness bo- lus was added to the Alderson phantom treatment plan. Then, a new measurement on the Alderson phantom was made using the custom-made bolus with optimized thickness. The measurement was compared to the calculated dose profile exported from the treat- ment planning system.

Results: The identical repeated measurements of the percentage depth dose at SSD = 70 cm had their highest deviation values around 3%, except the percentage depth dose curve for the field size d = 3 cm. The comparison of the phantom measurements at SSD
= 100 cm and the exported data from the treatment planning system showed good agree- ment. Although some differences could be seen for large field sizes, the deviation values of the full-width at half-maximum (FWHM) were not higher than 3%. The bolus mea- surement verified that a peak in dose, previously seen in measurements with no bolus, was effectively removed. Despite some differences that could be seen visually between the measured inline beam dose profile in Alderson phantom and the exported beam dose profile from the treatment planning system, the deviation value of the FWHM was not higher than 2%.

Conclusion: The eRT treatment planning system was evaluated and phantom measure- ments were performed for comparison purposes. Although the results indicate good agreement, further measurements are needed to verify the accuracy of the eRT treatment planning system at SSD = 70 cm, as the model data are based on an SSD = 70 cm. The results using optimized thickness bolus seem promising although further measurements are needed.}},
  author       = {{Coskun, Mizgin}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Evaluation of the treatment planning system decimal ElectronRT and custom-made bolus for FLASH-irradiation}},
  year         = {{2022}},
}