Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

" Optimization of Margins and Plan Robustness for Proton Therapy of Hodgkin’s Lymphoma"

Hörberger, Filip (2022) MSFT01 20212
Medical Physics Programme
Abstract
Purpose/Background: Utilizing proton therapy (PT) for treatment of Hodgkin’s lymphoma (HL) has demonstrated favorable features, particularly a reduced dose to organs at risk (OAR) in comparison with photon radiotherapy. However, there is a coherent complexity with PT including its uncertainties, such as range-uncertainties and set-up variations as protons are highly sensitive to tissue density variations within the beam-path. These are mitigated by using beam-specific target-margins, robust-optimization (RO) and motion mitigation techniques such as Deep Inspiration Breath-Hold (DIBH). Currently, a symmetric 7 mm displacement and 4.5% range-uncertainty (7 mm/4.5%) is applied in the RO-process for HL patients. The purpose of this thesis was... (More)
Purpose/Background: Utilizing proton therapy (PT) for treatment of Hodgkin’s lymphoma (HL) has demonstrated favorable features, particularly a reduced dose to organs at risk (OAR) in comparison with photon radiotherapy. However, there is a coherent complexity with PT including its uncertainties, such as range-uncertainties and set-up variations as protons are highly sensitive to tissue density variations within the beam-path. These are mitigated by using beam-specific target-margins, robust-optimization (RO) and motion mitigation techniques such as Deep Inspiration Breath-Hold (DIBH). Currently, a symmetric 7 mm displacement and 4.5% range-uncertainty (7 mm/4.5%) is applied in the RO-process for HL patients. The purpose of this thesis was to evaluate if the margins for HL PT in DIBH could be reduced and still ensure a robust dose to the target volume, simultaneously as the dose to normal tissue and OARs was minimized.

Material and Methods: An evaluation of the original treatment plans (TP) and of TPs with smaller margins, based on a retrospective evaluation of weekly verification CTs (vCT) acquired throughout the treatment course, were conducted in this study. Nine patients, diagnosed with HL who received PT treat- ment with DIBH, were included. A geometric and dosimetric analysis of the original TPs, including the total lung volume variation as well as OAR doses and target coverage(CTV D98%), were performed by recal- culating the original TPs on each acquired vCT to determine any deviations from the planning CT (pCT). Thereafter, three new TPs with smaller margins (5 mm/4.5%, 3 mm/4.5%, 5 mm/3.5%) were optimized and evaluated similar to the original TPs, i.e. with respect to target coverage and OAR doses.

Results: From the evaluation of the original TPs, both dosimetric and geometric variations throughout treatment were observed, with clinical target volume (CTV) D98% deviations within 1-3 % for most patients as well as an increase and decrease in OAR doses of up to 5 and 1 Gy (RBE) respectively. In addition, relative lung volume deviations of up to 25% were observed. However, for one patient, CTV D98% was as low as 86% with the original TP. For five out of the nine patients, TPs with smaller margins (5 mm/4.5%) would deliver a robust dose to CTV, with CTV D98% ≥ 96%. Two patients only scarcely achieved a robust dose to CTV throughout treatment with smaller margins. The last two patients already had insufficient target coverage with their original TP, which became more critical when applying smaller margins, e.g. CTV D98% dropped from 86% to 70%. With smaller margins OAR doses were lowered by 0.1 - 1 Gy(RBE).

Conclusion: TPs with smaller margins, in particular TP 5 mm/4.5%, demonstrated a sufficient robustness to CTV and lower dose to OARs. On the other hand, smaller margins increase the risk for under-dosing CTV if the patients DIBH reproducibility is poor. Ideally, if implementing smaller margins, knowledge about the DIBH reproducibility at an early stage is required, and replanning would be required to a greater extent. (Less)
Popular Abstract (Swedish)
Strålning inom vården används till allt ifrån bedöma benbrott till att behandla cancer. Cancerbehandling med högenergetiskt ljus är den allra vanligaste typen av strålbehandling och brukar benämnas konventionell strålbehandling. Däremot har terapi med protoner blivit allt vanligare runt om i världen. Vid konventionell strålbehandling går energistrålen in i kroppen, genom tumören och ut på andra sidan. Patienten erhåller därav en stråldos längs hela strålen, där bland annat "utgångsdosen" kan påverka frisk vävnad bortom tumören. Eftersom protoner är tunga, laddade, partiklar frigör de sin energi på ett annat sätt i jämförelse med ljus och därmed blir också strålnings-utbredningen annorlunda. Protoner med en given energi färdas en... (More)
Strålning inom vården används till allt ifrån bedöma benbrott till att behandla cancer. Cancerbehandling med högenergetiskt ljus är den allra vanligaste typen av strålbehandling och brukar benämnas konventionell strålbehandling. Däremot har terapi med protoner blivit allt vanligare runt om i världen. Vid konventionell strålbehandling går energistrålen in i kroppen, genom tumören och ut på andra sidan. Patienten erhåller därav en stråldos längs hela strålen, där bland annat "utgångsdosen" kan påverka frisk vävnad bortom tumören. Eftersom protoner är tunga, laddade, partiklar frigör de sin energi på ett annat sätt i jämförelse med ljus och därmed blir också strålnings-utbredningen annorlunda. Protoner med en given energi färdas en väldefinierad sträcka innan de fullt bromsas in, där en stor del av energin frigörs mot slutet av sträckan. Detta kan användas i behandling sådan att den stora delen av energin sammanfaller med själva tumören. Efter att ha levererat stråldos till tumören bromsar protonerna in och ger därmed inte ett stråldosbidrag till frisk vävnad långt bakom tumören. På detta vis erhåller frisk vävnad i vissa fall en mindre stråldos och protonterapi kan vara ett bra behandlingsalternativ för tumörtillväxt nära känsliga områden som hjär- nan, ögonen, hjärtat och ryggmärgen. En stor andel av de patienter som behandlas med protonterapi är därför barn och unga, eftersom det är för dessa risken med strålningsinducerade sena bieffekter är som högst.

Vid strålbehandling utgör cancercellerna en målvolym, vilken man vill ska erhålla en tillräckligt hög stråldos så att alla cancercellerna dör. Denna volym ska inkludera alla cancerceller, även de sub-kliniska cellerna som gömmer sig runt den cancertillväxt som går att urskilja med medicinska undersökningar. För att inkludera dessa expanderar man målvolymen med lite extra marginal i strålbehandlingsplanen. Vidare, på grund av organrörelse som till exempel andning, hjärtslag och tarmrörelse, ligger oftast målvolymen inte helt stilla. Detta innebär att ytterligare marginaler måste tilläggas runt målvolymen för att inkludera områden där tumören kan förflyttat sig till. Samtidigt som målvolymen förstoras är det viktigt att minimera stråldosen till normalvävnad samt till riskorgan. I och med detta uppstår alltså en konflikt eftersom större marginaler in- nebär högre sannolikhet att alla cancerceller dör men medför högre stråldos till normalvävnad och riskorgan. Vidare består en behandling oftast av flera fraktioner, där en del av behandlingen ges vid varje fraktion. Det är därför viktigt att samma behandlingssituation återskapas vid varje fraktion, inkluderat samma patient- positionering och vid behandling av Hodgkins lymfom även snarlika andetag vid varje fraktion. Snarlika andetag innebär att variationer av lungvolymen mellan flera andetag ska vara ganska liten vid behandling av Hodgkins lymfom.

I det här arbetet undersöktes det om mindre marginaler runt målvolymen kan användas samtidigt som målvolymen erhåller tillräckligt hög stråldos genom behandlingen. Arbetet gjordes med fokus på behandling för Hodgkins lymfom med protonterapi. Resultatet visade att mindre marginaler runt målvolymen är fullt rimligt för de patienter där endast en liten grad anatomiska skillnader förekom under behandlingen. För patienter med stora anatomiska skillnader ökade risken för att under-dosera målvolymen. Mindre stråldos till riskorgan är en värdefull vinst, men implementeras mindre marginaler kliniskt skulle justering av behan- dlingsplanen för patienter med stora anatomiska skillnader eventuellt behövas användas i mer utsträckning än vad som görs idag för att inte riskera under-dosera målvolymen. (Less)
Please use this url to cite or link to this publication:
author
Hörberger, Filip
supervisor
organization
course
MSFT01 20212
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
9099263
date added to LUP
2022-09-03 14:51:29
date last changed
2022-09-03 14:51:29
@misc{9099263,
  abstract     = {{Purpose/Background: Utilizing proton therapy (PT) for treatment of Hodgkin’s lymphoma (HL) has demonstrated favorable features, particularly a reduced dose to organs at risk (OAR) in comparison with photon radiotherapy. However, there is a coherent complexity with PT including its uncertainties, such as range-uncertainties and set-up variations as protons are highly sensitive to tissue density variations within the beam-path. These are mitigated by using beam-specific target-margins, robust-optimization (RO) and motion mitigation techniques such as Deep Inspiration Breath-Hold (DIBH). Currently, a symmetric 7 mm displacement and 4.5% range-uncertainty (7 mm/4.5%) is applied in the RO-process for HL patients. The purpose of this thesis was to evaluate if the margins for HL PT in DIBH could be reduced and still ensure a robust dose to the target volume, simultaneously as the dose to normal tissue and OARs was minimized.

Material and Methods: An evaluation of the original treatment plans (TP) and of TPs with smaller margins, based on a retrospective evaluation of weekly verification CTs (vCT) acquired throughout the treatment course, were conducted in this study. Nine patients, diagnosed with HL who received PT treat- ment with DIBH, were included. A geometric and dosimetric analysis of the original TPs, including the total lung volume variation as well as OAR doses and target coverage(CTV D98%), were performed by recal- culating the original TPs on each acquired vCT to determine any deviations from the planning CT (pCT). Thereafter, three new TPs with smaller margins (5 mm/4.5%, 3 mm/4.5%, 5 mm/3.5%) were optimized and evaluated similar to the original TPs, i.e. with respect to target coverage and OAR doses.

Results: From the evaluation of the original TPs, both dosimetric and geometric variations throughout treatment were observed, with clinical target volume (CTV) D98% deviations within 1-3 % for most patients as well as an increase and decrease in OAR doses of up to 5 and 1 Gy (RBE) respectively. In addition, relative lung volume deviations of up to 25% were observed. However, for one patient, CTV D98% was as low as 86% with the original TP. For five out of the nine patients, TPs with smaller margins (5 mm/4.5%) would deliver a robust dose to CTV, with CTV D98% ≥ 96%. Two patients only scarcely achieved a robust dose to CTV throughout treatment with smaller margins. The last two patients already had insufficient target coverage with their original TP, which became more critical when applying smaller margins, e.g. CTV D98% dropped from 86% to 70%. With smaller margins OAR doses were lowered by 0.1 - 1 Gy(RBE).

Conclusion: TPs with smaller margins, in particular TP 5 mm/4.5%, demonstrated a sufficient robustness to CTV and lower dose to OARs. On the other hand, smaller margins increase the risk for under-dosing CTV if the patients DIBH reproducibility is poor. Ideally, if implementing smaller margins, knowledge about the DIBH reproducibility at an early stage is required, and replanning would be required to a greater extent.}},
  author       = {{Hörberger, Filip}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{" Optimization of Margins and Plan Robustness for Proton Therapy of Hodgkin’s Lymphoma"}},
  year         = {{2022}},
}