Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Linking the selectivity of varying surface phases of a real palladium catalyst toward specific methane oxidation pathways with Ambient Pressure X-ray Photoelectron Spectroscopy

Küst, Ulrike LU (2023) FYSM30 20231
Synchrotron Radiation Research
Department of Physics
Abstract
The study of heterogeneous catalysis, especially within methane oxidation, is of high importance in order to more efficiently remove unburned methane from bio-fuel exhausts. This is relevant as bio-fuel engines will replace those driven by fossil fuels in the coming decades. This thesis contributes to the understanding of that reaction in a 5 mbar environmental pressure regime over a polycrystalline, rough palladium catalyst. The work thus bridges both, the materials gap by using a real catalyst and the pressure gap by approaching industrial pressures. Various surface phase transitions between oxide, carbide, and metallic surfaces were induced by ramping the catalyst temperature between 350°C and 585°C. Meanwhile, changes in the products... (More)
The study of heterogeneous catalysis, especially within methane oxidation, is of high importance in order to more efficiently remove unburned methane from bio-fuel exhausts. This is relevant as bio-fuel engines will replace those driven by fossil fuels in the coming decades. This thesis contributes to the understanding of that reaction in a 5 mbar environmental pressure regime over a polycrystalline, rough palladium catalyst. The work thus bridges both, the materials gap by using a real catalyst and the pressure gap by approaching industrial pressures. Various surface phase transitions between oxide, carbide, and metallic surfaces were induced by ramping the catalyst temperature between 350°C and 585°C. Meanwhile, changes in the products of the methane oxidation were observed with time-resolved Ambient Pressure X-ray Photoelectron Spectroscopy (tr-APXPS), it hence became possible to specifically relate certain surface phases to complete or partial oxidation of methane as well as carbon deposition on the surface. These results, especially the fact that carbon deposition already takes place when there is still oxide at the surface, might prove highly relevant for industrial applications. Furthermore, applying temperature ramps to enforce transitions in the catalyst's surface phase is a novelty first applied in the realm of this thesis. The successes of this technique open up possibilities for future research in catalysis. These contributions will, in the long run, help to fabricate better catalysts for bio-fuelled engines whose development will help transition to a more sustainable lifestyle. (Less)
Popular Abstract (Swedish)
Brinnande bilar, drunknande isbjörnar och träd som dör ut - det är detta som en del föreställer sig när det gäller global uppvärmning. För att förhindra att detta sker, behöver fossila bränslen ersättas i framtiden. En möjlighet är att använda biobränslen istället, fast problemet är att de innehåller mycket metan. Detta är tyvärr en farlig växthusgas som måste vidarebearbetas i förbränningsanläggninar. Den vanligaste metoden att göra det är genom oxidation, d.v.s. förvandla metan och syre till koldioxid och vatten. Men reaktionen kan liknas vid att klättra över ett berg. Därför kan det behövas olika hjälpmedel, något som i reaktioner kallas katalysatorer. Katalysatorn agerar som tunnel, den förenklar reaktionsstegen. För att framställa en... (More)
Brinnande bilar, drunknande isbjörnar och träd som dör ut - det är detta som en del föreställer sig när det gäller global uppvärmning. För att förhindra att detta sker, behöver fossila bränslen ersättas i framtiden. En möjlighet är att använda biobränslen istället, fast problemet är att de innehåller mycket metan. Detta är tyvärr en farlig växthusgas som måste vidarebearbetas i förbränningsanläggninar. Den vanligaste metoden att göra det är genom oxidation, d.v.s. förvandla metan och syre till koldioxid och vatten. Men reaktionen kan liknas vid att klättra över ett berg. Därför kan det behövas olika hjälpmedel, något som i reaktioner kallas katalysatorer. Katalysatorn agerar som tunnel, den förenklar reaktionsstegen. För att framställa en ideal tunnel, måste förståelsen för reaktionen förbättras. Man kan undersöka den med röntgenstrålning och, precis som hos läkaren, kan bilden berätta om vad som pågår. Det är därför möjligt att följa varje reaktionssteg vilket kan ge ytterligare information om systemet.

Med studierna i den här avhandlingen ville vi reda ut om speciella ytor av den metalliska katalysatorn föredrar att bearbeta metan på ett av följande sätt. Om det finns mycket tillgängligt syre nära metanmolekylerna som fastnat på katalysatorytan så kommer koldioxid och vatten produceras. Om mindre syre finns i omgivningen kommer istället kolmonoxid och vatten vara produkterna av reaktionen. Slutligen, om inget syre finns att tillgå så kommer ett lager av kol bildas på ytan av katalysatorn.

Eftersom dessa olika ytor som bildas inte gör det av en slump, så kunde dessa fenomen studeras genom att placera en bit palladium, som oftast används som katalysator för metanoxidation, i en gasmiljö som bestod av ett visst förhållande mellan syrgas och metangas. Sedan värmde vi upp metallen och kylde ner den igen mellan 350 °C och 585 °C. Med dessa inställningar formades de tre olika ytorna efter varandra, d.v.s. en yta täckt med syre, en metallisk och en yta täckt med kol.

Med röntgenstrålningen, studerade vi sedan reaktionen och kunde faktiskt observera att en yta täckt av syre bara kommer att tillåta metanbearbeting till koldioxid och vatten medan den metalliska ytan uppvisar ytterligare bildning av kol på ytan. Karbidytan visar sedan även produktion av kolmonoxid, förutom dem andra två mekanismerna.

Sammanfattningsvis så var både resultatet och metoden som användes lovande. Resultatet att en yta täckt med syre endast kommer att forma koldioxid kan användas i bilen, exempelvis, när bildningen av det giftiga kolmonoxid måste undvikas. Metoden som använder temperaturrampning för att framkalla ändringar på metallytan är bra för att reproducera resultat på ett tillförlitligt sätt. Detta är speciellt viktigt för forskning i alla ämnen och är därför mycket värdefull. Generellt kan resultaten från denna avhandling användas för att förbättra framställningen av katalysatorer inom industrin. Det möjliggör att avlägsna metan från förbränningsmotorer vilket kommer att hjälpa att tackla den globala uppvärmningen. (Less)
Popular Abstract
Burning cars, drowning polar bears, and the extinction of trees; that's how some of us might imagine the results of climate change. To keep the cars from burning and the bears from drowning, fossil fuels have to be replaced in the near future. A promising alternative are bio-fuels, which contain a lot of methane. This, unfortunately, is a potent greenhouse gas which is why it needs to be removed from exhaust processes by being processed further. The most common processing method is oxidation, meaning turning methane and oxygen into water and carbon dioxide. This reaction, however, is like trying to climb over a mountain. It needs some help, so-called catalysts, to take place. The catalyst acts like a tunnel, it lowers the energy needed to... (More)
Burning cars, drowning polar bears, and the extinction of trees; that's how some of us might imagine the results of climate change. To keep the cars from burning and the bears from drowning, fossil fuels have to be replaced in the near future. A promising alternative are bio-fuels, which contain a lot of methane. This, unfortunately, is a potent greenhouse gas which is why it needs to be removed from exhaust processes by being processed further. The most common processing method is oxidation, meaning turning methane and oxygen into water and carbon dioxide. This reaction, however, is like trying to climb over a mountain. It needs some help, so-called catalysts, to take place. The catalyst acts like a tunnel, it lowers the energy needed to make the reaction occur. To learn more about how to build the optimal tunnel for the processing of methane, we need to learn more about the reaction itself. It can be studied using X-rays, and just like at the doctor's, the resulting image can tell us what is going on. With this method, it is thus possible to follow each step of the reaction which gives additional information about the system. Therefore, we can learn a lot about the methane oxidation reaction.

During the studies in this thesis, we wanted to find out whether certain catalyst surface phases preferably process methane in one of the following ways. If there is a lot of oxygen present in the vicinity of methane sticking to the surface, carbon dioxide and water will be produced. If there is less oxygen available, carbon monoxide and water will be the products of the reaction. And finally, if no oxygen is used, a layer of atomic carbon will form at the surface.

As these various surface phases do not just appear, we placed the palladium catalyst in a gas environment with a certain ratio of oxygen and methane. Then, we heated the metal up and cooled it down again between 350 °C and 585 °C, several times. At these different temperatures, and with a carefully selected gas composition surrounding the catalyst, the three desired surface phases were formed subsequently, that is a metallic, a carbon covered, and an oxygen-covered surface.

With the X-rays, we then looked at the reaction and could indeed find out, that a surface covered in oxygen will only allow methane to produce carbon dioxide and water while the carbon-covered surface also allows the formation of carbon monoxide and an additional carbon layer at the surface. The metallic surface seems to allow both, the formation of carbon dioxide and a carbon layer at the surface, however, no formation of carbon monoxide was observed. This is schematically displayed in Figure 1.

In conclusion, both, the results obtained as well as the applied technique are very promising. The result, that a surface covered in oxygen will only produce carbon dioxide and water when processing methane, can be used in car exhausts for instance, when the formation of the toxic carbon monoxide needs to be suppressed. The temperature-ramping technique is a very handy way to conduct experiments in a reproducible and reliable manner. This is very important for research in general and contains, therefore, a vast range of possible applications. Overall, the knowledge obtained during this work will be applicable in the reformation of catalysts in industrial processing. That makes it possible to more efficiently remove methane from exhaust gas which will eventually help to tackle climate change. (Less)
Please use this url to cite or link to this publication:
author
Küst, Ulrike LU
supervisor
organization
course
FYSM30 20231
year
type
H2 - Master's Degree (Two Years)
subject
keywords
APXPS, catalysis, palladium, methane
language
English
id
9113148
date added to LUP
2023-04-04 14:45:58
date last changed
2023-04-04 14:45:58
@misc{9113148,
  abstract     = {{The study of heterogeneous catalysis, especially within methane oxidation, is of high importance in order to more efficiently remove unburned methane from bio-fuel exhausts. This is relevant as bio-fuel engines will replace those driven by fossil fuels in the coming decades. This thesis contributes to the understanding of that reaction in a 5 mbar environmental pressure regime over a polycrystalline, rough palladium catalyst. The work thus bridges both, the materials gap by using a real catalyst and the pressure gap by approaching industrial pressures. Various surface phase transitions between oxide, carbide, and metallic surfaces were induced by ramping the catalyst temperature between 350°C and 585°C. Meanwhile, changes in the products of the methane oxidation were observed with time-resolved Ambient Pressure X-ray Photoelectron Spectroscopy (tr-APXPS), it hence became possible to specifically relate certain surface phases to complete or partial oxidation of methane as well as carbon deposition on the surface. These results, especially the fact that carbon deposition already takes place when there is still oxide at the surface, might prove highly relevant for industrial applications. Furthermore, applying temperature ramps to enforce transitions in the catalyst's surface phase is a novelty first applied in the realm of this thesis. The successes of this technique open up possibilities for future research in catalysis. These contributions will, in the long run, help to fabricate better catalysts for bio-fuelled engines whose development will help transition to a more sustainable lifestyle.}},
  author       = {{Küst, Ulrike}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Linking the selectivity of varying surface phases of a real palladium catalyst toward specific methane oxidation pathways with Ambient Pressure X-ray Photoelectron Spectroscopy}},
  year         = {{2023}},
}