Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Micromechanical Characterization of Thin Paper Materials

Bengtsson, Linus LU (2023) PHYM01 20222
Solid State Physics
Department of Physics
Faculty of Engineering, LTH
Abstract (Swedish)
Hur ser framtidens hållbara förpackning ut och vad är den tillverkad av? För att besvara denna fråga blir mikromekanisk karakterisering av material en viktig parameter att utforska och förstå. I synnerhet är mikromekaniken hos tunna pappersmaterial intressant då materialet har användningspotential i flera förpackningsapplikationer.

Detta examensarbete fokuserar på att studera mikromekaniska beteenden genom in situ dragprovning inuti vakuumkammaren hos ett svepelektronmikroskop. In situ testning gör det möjligt att kombinera högupplösta observationer och mätresultat under belastning, vilket ger en inblick i de mekaniska egenskaperna och deformationsmekanismerna.

För att uppnå detta så utvecklades en metodiken som innefattar... (More)
Hur ser framtidens hållbara förpackning ut och vad är den tillverkad av? För att besvara denna fråga blir mikromekanisk karakterisering av material en viktig parameter att utforska och förstå. I synnerhet är mikromekaniken hos tunna pappersmaterial intressant då materialet har användningspotential i flera förpackningsapplikationer.

Detta examensarbete fokuserar på att studera mikromekaniska beteenden genom in situ dragprovning inuti vakuumkammaren hos ett svepelektronmikroskop. In situ testning gör det möjligt att kombinera högupplösta observationer och mätresultat under belastning, vilket ger en inblick i de mekaniska egenskaperna och deformationsmekanismerna.

För att uppnå detta så utvecklades en metodiken som innefattar framställning av anpassade pappersprover med hjälp av ett programmerbart skärbord för full kontroll över orientering och dimensioner. Proverna monteras och justeras sedan i dragprovaren där de deformeras förbi brottgränsen. Under hela deformationen tas bilder, videor och kraft-förskjutningsdata.

Resultaten från denna uppsats avslöjar att de mekaniska egenskaperna hos tunt papper är starkt påverkade av fiberorientering och fukthalt samt bildandet av hålrum. Den maximala dragstyrkan, brottsträckgränsen och Youngs modul varierar avsevärt beroende på fibrernas orientering inom materialet. Dessutom påverkar fukthalten i papperet det mekaniska beteendet avsevärt, varvid högre fukthalt inom intervallet 1 till 6\% visar sig minska maximal dragstyrka och öka formbarheten.

Sammanfattningsvis så bidrog undersökningen av mikromekaniska beteenden hos tunt papper till utvecklingen förpackningslösningar med miljöhänsyn och påpekar behovet av fortsatt framtida forskning. (Less)
Abstract
What does the future sustainable package look like, and what is it made of? To answer this question, the micromechanical characterization of materials becomes an important parameter to explore and understand. In particular, the micromechanical behavior of thin paper materials is of interest due to its potential in sustainable packaging applications.

This master's thesis focuses on investigating micromechanical behavior through in situ tensile testing inside the vacuum chamber of a scanning electron microscope. In situ testing makes it possible to combine high-resolution observations and measured material response under load, hence providing insights into the mechanical properties and deformation mechanisms.

To achieve this, a... (More)
What does the future sustainable package look like, and what is it made of? To answer this question, the micromechanical characterization of materials becomes an important parameter to explore and understand. In particular, the micromechanical behavior of thin paper materials is of interest due to its potential in sustainable packaging applications.

This master's thesis focuses on investigating micromechanical behavior through in situ tensile testing inside the vacuum chamber of a scanning electron microscope. In situ testing makes it possible to combine high-resolution observations and measured material response under load, hence providing insights into the mechanical properties and deformation mechanisms.

To achieve this, a methodology was developed that involve preparing custom paper samples using a programmable cutting table for full control over orientations and dimensions. The samples are then mounted and aligned in the tensile tester, where they are deformed beyond breakage. Throughout the deformation process, images, videos and force-displacement data are simultaneously captured.

The results of this thesis reveal that the mechanical properties of thin paper are heavily influenced by fiber orientation and moisture content along with void formations. The maximum tensile strength, strain at break and Young's modulus of the paper vary significantly depending on the orientations of the fibers within the material. Furthermore, the moisture content of the paper affects the mechanical behavior considerably, with higher moisture content within the range of 1 to 6\% being found to reduce maximum tensile strength and increase ductility.

In conclusion, the investigation of the micromechanical behavior of thin paper contributes to the development of packaging solutions with environmental considerations and urges the need for future research. (Less)
Popular Abstract (Swedish)
Hur ser framtidens hållbara förpackning ut och vad är den tillverkad av?
Denna studie undersöker mikromekaniska beteenden hos tunna pappersmaterial och deras
användningspotential i förpackningsapplikationer.
Please use this url to cite or link to this publication:
author
Bengtsson, Linus LU
supervisor
organization
alternative title
Investigating Micromechanical Behavior of Thin Paper via In situ SEM Tensile Testing
course
PHYM01 20222
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Micromechanical characterization, SEM, In situ tensile testing, Paper deformation, Fiber orientation, Paper mechanics
language
English
id
9131638
date added to LUP
2023-06-30 15:33:57
date last changed
2023-06-30 15:35:19
@misc{9131638,
  abstract     = {{What does the future sustainable package look like, and what is it made of? To answer this question, the micromechanical characterization of materials becomes an important parameter to explore and understand. In particular, the micromechanical behavior of thin paper materials is of interest due to its potential in sustainable packaging applications.

This master's thesis focuses on investigating micromechanical behavior through in situ tensile testing inside the vacuum chamber of a scanning electron microscope. In situ testing makes it possible to combine high-resolution observations and measured material response under load, hence providing insights into the mechanical properties and deformation mechanisms. 

To achieve this, a methodology was developed that involve preparing custom paper samples using a programmable cutting table for full control over orientations and dimensions. The samples are then mounted and aligned in the tensile tester, where they are deformed beyond breakage. Throughout the deformation process, images, videos and force-displacement data are simultaneously captured.

The results of this thesis reveal that the mechanical properties of thin paper are heavily influenced by fiber orientation and moisture content along with void formations. The maximum tensile strength, strain at break and Young's modulus of the paper vary significantly depending on the orientations of the fibers within the material. Furthermore, the moisture content of the paper affects the mechanical behavior considerably, with higher moisture content within the range of 1 to 6\% being found to reduce maximum tensile strength and increase ductility.

In conclusion, the investigation of the micromechanical behavior of thin paper contributes to the development of packaging solutions with environmental considerations and urges the need for future research.}},
  author       = {{Bengtsson, Linus}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Micromechanical Characterization of Thin Paper Materials}},
  year         = {{2023}},
}