Effects of Contamination on 4MOST Stellar Spectra
(2025) FYSK04 20251Department of Physics
Astrophysics
- Abstract
- This paper discusses the effects of different types of contamination on 4MOST stellar spectra. Three main types of contamination were tested. These were, a smooth function over the continuum, changing the H-alpha line, and adding telluric contamination. By knowing how much these experiments affected the generated values, it was possible to understand the importance of avoiding overfitting or underfitting the continuum and removing telluric contamination. The effects of these types of contamination were compared to both a signal-to-noise ratio of 100 and 10. This gave insightful information into how long it will be necessary to observe stars to achieve the desired precision. Furthermore, the results were compared to the 4MOST criteria to... (More)
- This paper discusses the effects of different types of contamination on 4MOST stellar spectra. Three main types of contamination were tested. These were, a smooth function over the continuum, changing the H-alpha line, and adding telluric contamination. By knowing how much these experiments affected the generated values, it was possible to understand the importance of avoiding overfitting or underfitting the continuum and removing telluric contamination. The effects of these types of contamination were compared to both a signal-to-noise ratio of 100 and 10. This gave insightful information into how long it will be necessary to observe stars to achieve the desired precision. Furthermore, the results were compared to the 4MOST criteria to better understand where to direct focus when trying to increase accuracy. [It was observed that degrading the H-alpha line by 10\% considerably damaged the estimation of $T_{eff}$.] Furthermore, for most elements a longer wavelength of a smooth function over the continuum created the worst estimations. In many cases this was worse than decreasing to a signal-to-noise ratio of 10.
Additionally, an alternative method to find the continuum is presented. My method does not sacrifice the number of data points by averaging them, but instead uses a sliding window technique. By knowing what type of spectrum is expected, this method can yield very good results down to below 1K difference between the estimated surface temperature and the true value.
The results in this paper are useful for understanding both what makes spectra bad and what to do to prevent these issues. Furthermore, there is no reason to expect that these results would not apply to non-synthetic spectra as well. (Less) - Popular Abstract
- We reside in the Milky Way Galaxy. A place that we call home in an ever-growing universe. But how much do we actually know about our galaxy?
There is much yet to be discovered about our galaxy. An example of what we do not know is found when observing the galactic disk. This is the region that expands horizontally from the galactic center. The disk is split into a thin and a thick disk. There seems to be a higher concentration of young stars and gas in the thin disk, which extends very little vertically, and there seems to be more old stars in the thick disk. However, there is no evidence of a strict cut-off between these two. By knowing the elemental abundances, proper motions, and radial velocities of stars, it will be possible to... (More) - We reside in the Milky Way Galaxy. A place that we call home in an ever-growing universe. But how much do we actually know about our galaxy?
There is much yet to be discovered about our galaxy. An example of what we do not know is found when observing the galactic disk. This is the region that expands horizontally from the galactic center. The disk is split into a thin and a thick disk. There seems to be a higher concentration of young stars and gas in the thin disk, which extends very little vertically, and there seems to be more old stars in the thick disk. However, there is no evidence of a strict cut-off between these two. By knowing the elemental abundances, proper motions, and radial velocities of stars, it will be possible to track their motions. With this, it will be possible to answer this question once and for all. Did the thin and thick disks start off being together, or did one of them form later? This is indeed an interesting question since it would explain much of the history of our galaxy. If one disk formed later, it could indicate a collision with another galaxy a long time ago. However, if they started off together, it would tell us about the movement of stars in our galaxy.
By understanding how to efficiently estimate elemental abundances and other stellar properties, this question can be answered. Indeed, not only this question but many others. A good comparison would be to imagine trying to take a photo but not getting the object into focus. The image would be blurry, and not much could be said about the details. In the same way, when observing stars, our understanding becomes incomplete when we cannot see the full picture. This is why the accuracy of these measurements is so important. Essentially, we are learning how to bring the object into focus and finally see the image clearly.
My project is about understanding what makes the image blurry and how we can get it into focus to see the full picture. To get the image in the first place, the light from stars is split into different colors. Just like how a prism splits white light into a rainbow. This separated light is what we call a spectrum. There are many factors in a spectrum that can influence the estimation of the abundance of elements in stars, and in this paper, I quantify a few. Additionally, I discuss what can be done to prevent errors that arise. With this information, we can make the spectrum clearer and that way, get more accurate results.
Galaxy formation is a very complicated topic with many things remaining to be answered. But with the right tools, it is possible to gain insight into this and understand so much more about the universe as a whole. (Less) - Popular Abstract (Swedish)
- Vi bor i galaxen Vintergatan. En plats som vi kan kalla hemma i ett allt växande universum. Men hur mycket vet vi egentligen om våran galax?
Det finns mycket som återstår att upptäcka om våran galax. Ett exempel på någonting som vi inte vet hittas när vi observerar den galaktiska disken. Detta är regionen som expanderar horisontellt från det galaktiska centrumet. Disken är uppdelad i en tunn och en tjock disk. Det ser ut som att det är en högre koncentration av unga stjärnor och gas i den tunna disken, som sträcker sig väldigt lite vertikalt, och det ser ut att vara fler äldre stjärnor i den tjocka disken. Däremot finns det inget bevis på en strikt urskiljning mellan dessa två. Om vi vet de elementära uppbyggnaderna, korrekta... (More) - Vi bor i galaxen Vintergatan. En plats som vi kan kalla hemma i ett allt växande universum. Men hur mycket vet vi egentligen om våran galax?
Det finns mycket som återstår att upptäcka om våran galax. Ett exempel på någonting som vi inte vet hittas när vi observerar den galaktiska disken. Detta är regionen som expanderar horisontellt från det galaktiska centrumet. Disken är uppdelad i en tunn och en tjock disk. Det ser ut som att det är en högre koncentration av unga stjärnor och gas i den tunna disken, som sträcker sig väldigt lite vertikalt, och det ser ut att vara fler äldre stjärnor i den tjocka disken. Däremot finns det inget bevis på en strikt urskiljning mellan dessa två. Om vi vet de elementära uppbyggnaderna, korrekta rörelserna, och radiella rörelserna av stjärnor, så kan vi spåra deras rörelser. Med detta kommer det vara möjligt att svara på denna fråga en gång för alla. Var den tunna och tjocka disken en disk till att börja med, eller formades en senare? Detta är sannerligen en intressant fråga eftersom den skulle förklara mycket om historian av våran galax.
Genom att förstå hur man effektivt kan hitta de elementära uppbyggnaderna och andra stjärnegenskaper, kan denna fråga bli besvarad. Sannerligen, inte bara denna fråga utan många andra också. En bra jämförelse är att försöka ta en bild men inte lyckas få objektet i fokus. Bilden skulle bli suddig och inte mycket kan sägas om detaljerna. På samma sätt, när vi observerar stjärnor, blir våran förståelse inkomplett när vi inte kan se hela bilden. Detta är anledningen till att det är så viktigt att säkerheten på mätningarna är så bra som möjligt. Väsentligen lär vi oss hur vi får stjärnor i fokus och äntligen får en klar bild.
Mitt projekt handlar om att förstå vad som gör bilden suddig och vad vi kan göra för att få den i fokus. För att få bilden i första hand så delar vi in ljuset från stjärnor i olika färger. Precis som ett prisma delar vitt ljus i regnbågens färger. Detta uppdelade ljus är vad vi kallar för ett spektrum. Det finns många faktorer i ett spektrum som kan påverka våran uppskattning av elementära uppbyggnader i stjärnor, och i detta papper, namnger jag några. Dessutom, förklarar jag vad som kan göras för att motverka problem som uppstår. Med denna information så kan vi köra spektrum klarare och på så vis, få bättre resultat.
Galax formation är väldigt komplicerat och det finns mycket som fortfarande är obesvarat. Men med de rätta verktygen så är det möjligt att få en inblick i detta och förstå så mycket mer om universum i sin helhet. (Less)
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/9194481
- author
- Larsson, Victor LU
- supervisor
-
- Ross Church LU
- organization
- course
- FYSK04 20251
- year
- 2025
- type
- M2 - Bachelor Degree
- subject
- keywords
- 4MOST, Spectra, Analysis
- report number
- 2025-EXA248
- other publication id
- 2025-EXA248
- language
- English
- id
- 9194481
- date added to LUP
- 2025-06-18 11:59:03
- date last changed
- 2025-06-18 11:59:03
@misc{9194481, abstract = {{This paper discusses the effects of different types of contamination on 4MOST stellar spectra. Three main types of contamination were tested. These were, a smooth function over the continuum, changing the H-alpha line, and adding telluric contamination. By knowing how much these experiments affected the generated values, it was possible to understand the importance of avoiding overfitting or underfitting the continuum and removing telluric contamination. The effects of these types of contamination were compared to both a signal-to-noise ratio of 100 and 10. This gave insightful information into how long it will be necessary to observe stars to achieve the desired precision. Furthermore, the results were compared to the 4MOST criteria to better understand where to direct focus when trying to increase accuracy. [It was observed that degrading the H-alpha line by 10\% considerably damaged the estimation of $T_{eff}$.] Furthermore, for most elements a longer wavelength of a smooth function over the continuum created the worst estimations. In many cases this was worse than decreasing to a signal-to-noise ratio of 10. Additionally, an alternative method to find the continuum is presented. My method does not sacrifice the number of data points by averaging them, but instead uses a sliding window technique. By knowing what type of spectrum is expected, this method can yield very good results down to below 1K difference between the estimated surface temperature and the true value. The results in this paper are useful for understanding both what makes spectra bad and what to do to prevent these issues. Furthermore, there is no reason to expect that these results would not apply to non-synthetic spectra as well.}}, author = {{Larsson, Victor}}, language = {{eng}}, note = {{Student Paper}}, title = {{Effects of Contamination on 4MOST Stellar Spectra}}, year = {{2025}}, }