Proteomics and Phosphoproteomics Analysis of Parental and Cisplatin-Resistant Ovarian Cancer Cell Lines Treated with C26A6 and Volasertib
(2025) KIMM05 20251Department of Immunotechnology
- Abstract
- Ovarian cancer is the deadliest gynaecologic malignancy, with most patients diagnosed at an advanced stage and facing poor long-term survival. Resistance to cisplatin-based chemotherapy is a major clinical obstacle, yet its proteomic drivers remain poorly defined. In this study, I applied data-independent acquisition mass spectrometry with DIA-NN data processing to analyse one parental and two cisplatin-resistant CAOV3 ovarian cancer cell lines, treated with Volasertib (a PLK1 inhibitor) and C26A6 (an MTDH–SND1 interaction inhibitor). Resistant cells, especially R24, showed pronounced proteomic divergence and increased levels of proteins in oxidative stress tolerance pathways involving NRF2, KEAP1, and HMOX1. Paradoxically, PLK1 levels... (More)
- Ovarian cancer is the deadliest gynaecologic malignancy, with most patients diagnosed at an advanced stage and facing poor long-term survival. Resistance to cisplatin-based chemotherapy is a major clinical obstacle, yet its proteomic drivers remain poorly defined. In this study, I applied data-independent acquisition mass spectrometry with DIA-NN data processing to analyse one parental and two cisplatin-resistant CAOV3 ovarian cancer cell lines, treated with Volasertib (a PLK1 inhibitor) and C26A6 (an MTDH–SND1 interaction inhibitor). Resistant cells, especially R24, showed pronounced proteomic divergence and increased levels of proteins in oxidative stress tolerance pathways involving NRF2, KEAP1, and HMOX1. Paradoxically, PLK1 levels increased following Volasertib treatment, but many proteins in the haemostasis pathways were upregulated after treatment, suggesting anticancer effect. Furthermore, several proteins related to DNA replication were downregulated in all cells following C26A6 treatment, consistent with antitumor activity. However, resistant cells activated proteins in protein synthesis and ribosome biogenesis pathways in response, suggesting a shift in survival strategy that may compromise C26A6’s impact. This context-dependent response underscores the need for biomarker-guided therapy selection. I identified several potential biomarkers for cisplatin resistance and possible drug targets alongside repurposing opportunities for existing drugs such as auranofin, doxorubicin, and topotecan. Together, these findings uncover proteomic and phosphoproteomic signatures of cisplatin resistance and drug response, offering clues for personalised therapeutic strategies in ovarian cancer. (Less)
- Popular Abstract (Swedish)
- Mot smartare cellgiftsbehandling: Att förebygga behandlingsresistens vid äggstockscancer
Äggstockscancer är den dödligaste gynekologiska cancertypen och kräver alltför många liv eftersom tumörer ofta blir resistenta mot behandling – särskilt mot cisplatin, vårt främsta försvar. För att rädda fler liv måste vi förstå hur denna resistens utvecklas och hur vi kan överlista den. I mitt examensarbete upptäckte jag att vissa cancerceller inte blockerar attacken från cisplatin; utan i stället anpassar de sig. Det är som om de har lärt sig andas under vatten och överlever något som borde ha dränkt dem.
Cisplatin, ett vanligt cellgift mot äggstockscancer, verkar främst genom att frigöra toxiska föreningar kallade reaktiva syreföreningar... (More) - Mot smartare cellgiftsbehandling: Att förebygga behandlingsresistens vid äggstockscancer
Äggstockscancer är den dödligaste gynekologiska cancertypen och kräver alltför många liv eftersom tumörer ofta blir resistenta mot behandling – särskilt mot cisplatin, vårt främsta försvar. För att rädda fler liv måste vi förstå hur denna resistens utvecklas och hur vi kan överlista den. I mitt examensarbete upptäckte jag att vissa cancerceller inte blockerar attacken från cisplatin; utan i stället anpassar de sig. Det är som om de har lärt sig andas under vatten och överlever något som borde ha dränkt dem.
Cisplatin, ett vanligt cellgift mot äggstockscancer, verkar främst genom att frigöra toxiska föreningar kallade reaktiva syreföreningar (ROS). Dessa är som vattnet i analogin ovan, och brukar vanligtvis dränka cancercellerna. Jag upptäckte att resistenta celler stärker sina försvarssystem mot ROS, främst genom en molekyl som heter NRF2. Det betyder att cellerna har utvecklat gälar för att överleva genom att andas under vatten.
Även koncentrationen i vilken cisplatin ges till patienter verkar påverka utvecklingen av resistens. Celler som exponerats för höga cisplatindoser förändrades mer än de som behandlats med låga doser, vilket tyder på att själva doseringsregimen kan påverka hur resistens uppstår.
Vid cancerbehandling är det vanligt att resistens mot ett läkemedel också leder till resistens mot andra, särskilt om dessa också dödar celler genom att producera ROS. Jag testade två andra läkemedel – Volasertib och C26A6 – på samma celler. Båda visade stark effekt på icke-resistenta celler, men effekten på de resistenta cellerna skiljde sig delvis åt. Som svar på Volasertib aktiverade de resistenta cellerna en reparations-mekanism kallad hemostas, ungefär som en hantverkare som lagar ett hus efter en storm. Som svar på C26A6 ökade cellerna i stället sin proteintillverkning genom att förstärka sitt proteinmaskineri, mer specifikt tRNA-acetylering och rRNA-bearbetning, vilket kan liknas vid att snabbt bygga nödskydd inför en annalkande orkan.
Under studien undersökte jag strategier för att minska eller fördröja risken för resistensutveckling. Överraskande nog fann jag att flera läkemedel som redan används inom sjukvården – särskilt cellgifter som doxorubicin och topotekan – potentiellt skulle kunna ges tillsammans med cisplatin för att minska risken för resistens.
Mitt examensarbete lyfter behovet av nya läkemedel och strategier för att matcha patienter med rätt behandling. Jag försökte identifiera markörer som kan förutsäga om en patient redan är resistent mot cisplatin, eller sannolikt kommer att bli det, vilket är ett steg mot mer individanpassad medicin. Jag ville också förstå hur resistenta celler beter sig och hur de reagerar på andra behandlingar. Om vi vill minska dödligheten vid äggstockscancer måste vi hitta svar på dessa frågor. De är nycklarna till att utveckla bättre läkemedel och mer skräddarsydda behandlingar, vilka båda förbättrar patienternas chans att överleva.
Mina resultat kan, efter vidare forskning, inte bara leda till nya läkemedel och förbättrade prognostiska och diagnostiska verktyg som säkerställer att patienter får rätt behandling från början, utan har även genererat insikter som kan tillämpas direkt. Till exempel kan en lågdosregim av cisplatin resultera i en resistens som är lättare att hantera, och att kombinera cisplatin med doxorubicin eller topotekan, som redan är godkända för behandling av äggstockscancer, kan bidra till att förebygga resistens medan klinisk forskning fortgår. (Less) - Popular Abstract
- Toward Smarter Chemotherapy: Preventing Resistance in Ovarian Cancer Treatment
Ovarian cancer is the deadliest gynaecologic cancer, claiming too many lives because tumours often grow resistant to treatment – especially to cisplatin, our main line of defence. To save more lives, we must understand how this resistance develops, and how to outsmart it. In my thesis, I discovered that some cancer cells don’t block the attack by cisplatin; instead, they adapt. It’s as if they’ve learned to breathe underwater, surviving what should have drowned them.
The chemotherapeutic cisplatin, commonly used to treat ovarian cancer, exerts its function mainly by releasing toxic compounds called reactive oxygen species (ROS). These are like the... (More) - Toward Smarter Chemotherapy: Preventing Resistance in Ovarian Cancer Treatment
Ovarian cancer is the deadliest gynaecologic cancer, claiming too many lives because tumours often grow resistant to treatment – especially to cisplatin, our main line of defence. To save more lives, we must understand how this resistance develops, and how to outsmart it. In my thesis, I discovered that some cancer cells don’t block the attack by cisplatin; instead, they adapt. It’s as if they’ve learned to breathe underwater, surviving what should have drowned them.
The chemotherapeutic cisplatin, commonly used to treat ovarian cancer, exerts its function mainly by releasing toxic compounds called reactive oxygen species (ROS). These are like the water in the analogy above – normally drowning cancer cells. I discovered that resistant cells increase their defence systems against ROS, mostly through a molecule called NRF2. This means the cells have developed gills to survive by breathing underwater.
The concentration in which cisplatin is given to patients seems to impact resistance development. Cells exposed to high doses of cisplatin more immediately changed behaviour, compared to those given low doses. This suggests that the dosing regimen itself could influence how resistance develops.
In cancer treatment, it’s common for resistance to one drug to cause resistance to others, especially when those drugs also kill cells by producing ROS. I tested two other drugs, Volasertib and C26A6, on the same cells. While both drugs had a strong effect on non-resistant cells, their effect on resistant cells was questionable. In response to Volasertib, the resistant cells activated a repair mechanism known as haemostasis – like an artisan mending a house after a storm. In response to C26A6, the cells instead ramped up protein production by increasing the protein machinery, especially tRNA acetylation and rRNA processing – like rapidly assembling emergency shelters ahead of an approaching hurricane.
Throughout the study, I explored strategies to reduce or delay the risk of developing resistance. Surprisingly, I found that several drugs already used in hospitals, especially the cancer drugs doxorubicin and topotecan, could potentially be given together with cisplatin to reduce the risk of resistance.
My thesis addresses the need for new drugs and strategies to match patients with the right treatment. I aimed to identify markers that could predict whether a patient is already resistant to cisplatin, or likely to become so, which is a step toward personalized medicine. I also wanted to understand how resistant cells behave and how they respond to other treatments. If we want to reduce the mortality associated with ovarian cancer, we must find answers to these questions. They are our keys to developing better drugs and delivering more tailored treatments, both of which improve patients’ chances of survival.
Not only could my results, after further research, potentially lead to new drugs and improved prognostic and diagnostic tools to ensure patients receive the right treatment from the start, but they have also generated insights that could be applied immediately. For example, using a low-dose regimen for cisplatin might result in resistance that is easier to manage, and combining it with doxorubicin or topotecan, already approved for ovarian cancer, could help prevent resistance while clinical research continues. (Less)
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/9197793
- author
- Arnlund, Johanna LU
- supervisor
- organization
- course
- KIMM05 20251
- year
- 2025
- type
- H2 - Master's Degree (Two Years)
- subject
- keywords
- Cisplatin resistance, Ovarian cancer, Proteomics, Phosphoproteomics, NRF2, PLK1, MTDH-SND1, Volasertib, C26A6, Drug repurposing
- language
- English
- id
- 9197793
- date added to LUP
- 2025-06-12 16:08:38
- date last changed
- 2025-06-12 16:08:38
@misc{9197793, abstract = {{Ovarian cancer is the deadliest gynaecologic malignancy, with most patients diagnosed at an advanced stage and facing poor long-term survival. Resistance to cisplatin-based chemotherapy is a major clinical obstacle, yet its proteomic drivers remain poorly defined. In this study, I applied data-independent acquisition mass spectrometry with DIA-NN data processing to analyse one parental and two cisplatin-resistant CAOV3 ovarian cancer cell lines, treated with Volasertib (a PLK1 inhibitor) and C26A6 (an MTDH–SND1 interaction inhibitor). Resistant cells, especially R24, showed pronounced proteomic divergence and increased levels of proteins in oxidative stress tolerance pathways involving NRF2, KEAP1, and HMOX1. Paradoxically, PLK1 levels increased following Volasertib treatment, but many proteins in the haemostasis pathways were upregulated after treatment, suggesting anticancer effect. Furthermore, several proteins related to DNA replication were downregulated in all cells following C26A6 treatment, consistent with antitumor activity. However, resistant cells activated proteins in protein synthesis and ribosome biogenesis pathways in response, suggesting a shift in survival strategy that may compromise C26A6’s impact. This context-dependent response underscores the need for biomarker-guided therapy selection. I identified several potential biomarkers for cisplatin resistance and possible drug targets alongside repurposing opportunities for existing drugs such as auranofin, doxorubicin, and topotecan. Together, these findings uncover proteomic and phosphoproteomic signatures of cisplatin resistance and drug response, offering clues for personalised therapeutic strategies in ovarian cancer.}}, author = {{Arnlund, Johanna}}, language = {{eng}}, note = {{Student Paper}}, title = {{Proteomics and Phosphoproteomics Analysis of Parental and Cisplatin-Resistant Ovarian Cancer Cell Lines Treated with C26A6 and Volasertib}}, year = {{2025}}, }