Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Monte Carlo based investigation of the influence of accelerator head geometry on megavolt photon beam quality in radiotherapy

Jutemark, Beatrice (2005)
Medical Physics Programme
Abstract
"This project concerns the precise characterization of one of the VARIAN accelerators used in the radiotherapy clinic at the Finsen Centre at Copenhagen University Hospital, Denmark.
Detailed characteristics of the clinical beam incident on the patient are almost impossible to measure. Even though manufacturers provide the necessary information about the specific accelerator, the models are constantly improving and the individual purchasers often adjust the machines to match e.g. the characteristics of a previous or of an existing accelerator. One particular concern is that it is impossible to get accurate information about the primary electron beam, such as its energy and its radial intensity distribution, as it leaves the accelerator... (More)
"This project concerns the precise characterization of one of the VARIAN accelerators used in the radiotherapy clinic at the Finsen Centre at Copenhagen University Hospital, Denmark.
Detailed characteristics of the clinical beam incident on the patient are almost impossible to measure. Even though manufacturers provide the necessary information about the specific accelerator, the models are constantly improving and the individual purchasers often adjust the machines to match e.g. the characteristics of a previous or of an existing accelerator. One particular concern is that it is impossible to get accurate information about the primary electron beam, such as its energy and its radial intensity distribution, as it leaves the accelerator vacuum window and hits the bremsstrahlung target. With the Monte Carlo technique it is possible to simulate the radiation transport through the accelerator head and achieve a better understanding of the clinical beam. The accuracy of the simulated beams were validated by the agreement with measured dose distributions.
In this project the photon beams from a Varian Clinac-23EX accelerator were investigated. This was done by simulating 6 and 18 MV photon beams for two different field sizes, 10 x 10 cm2 and 40 x 40 cm2, using the BEAMnrc and the DOSXYZnrc Monte Carlo code system. The linac geometry was used as input to the Monte Carlo code with specifications obtained from the vendor of the accelerator. Total dose measurements were performed in water using a Scanditronix-Wellhöfer RFA-300 beam scanner with an RK-8305 ionization chamber.
To validate the Monte Carlo model for the photon-beam output from the Varian Clinac-23EX, measured and calculated relative depth-dose data along the central-axis and dose profile at two different depths, Dmax and 10 cm, were matched. This required some fine tuning of the incident electron beam parameters, such as its energy, energy distribution and radial intensity distribution.

A good agreement between calculated and measured dose distributions was found, except near the surface for larger fields, particularly for the 18 MV photon beam. The final primary electron beam incident on the target, to get the best fit, was found to be monoenergetic with energies of 6.4 MeV and 17.5 MeV for the 6 MV and 18 MV photon beam, respectively. The optimal radial intensity distribution of the electron beams had a Gaussian spread with widths of 1.2 mm and 1.5 mm for the 6 MV and the 18 MV photon beam, respectively. This information will be important for future treatment planning, e.g. as a benchmark for clinical treatment planning systems.
ii" (Less)
Abstract (Swedish)
Många av dagens cancerpatienter får strålbehandling. Den strålning som produceras i en strålbehandlingsapparat är av två olika slag: elektronstrålning och fotonstrålning. Vanligt ljus är också fotonstrålning, men fotonstrålningen som används inom strålbehandling är mycket mer energirik och kallas med ett annat namn för röntgenstrålning. Inför en strålbehandling görs mycket planering utav ett team bestående av bl.a. läkare, sjuksköterskor och sjukhusfysiker. Med hjälp av avancerade tredimensionella dosplaneringssystem beräknas dosfördelningen i patienten. Dosplaneringssystemen använder sig utav matematiska algoritmer. Men med dessa program blir inte stråldosen korrekt beräknad i gränsen mellan vissa områden av olika densitet (t.ex. mellan... (More)
Många av dagens cancerpatienter får strålbehandling. Den strålning som produceras i en strålbehandlingsapparat är av två olika slag: elektronstrålning och fotonstrålning. Vanligt ljus är också fotonstrålning, men fotonstrålningen som används inom strålbehandling är mycket mer energirik och kallas med ett annat namn för röntgenstrålning. Inför en strålbehandling görs mycket planering utav ett team bestående av bl.a. läkare, sjuksköterskor och sjukhusfysiker. Med hjälp av avancerade tredimensionella dosplaneringssystem beräknas dosfördelningen i patienten. Dosplaneringssystemen använder sig utav matematiska algoritmer. Men med dessa program blir inte stråldosen korrekt beräknad i gränsen mellan vissa områden av olika densitet (t.ex. mellan olika organ). Detta skapar problem vid vissa behandlingstekniker som används.

Ett så kallat Monte Carlo program har använts i denna studie för att undersöka fotonstrålningen från en strålbehandlingsapparat på Rigshospitalet i Köpenhamn. Den information om fotonstrålningen, som man kan få genom så kallade Monte Carlo simuleringar, kan man så småningom använda för att utveckla bättre dosplaneringssystem. Man kan säga att ett Monte Carlo program fungerar som en slumpgenerator som genomför sannolikhetsbaserade beräkningar. Ett Monte Carlo program bygger på den verkliga strålningsfysiken och behandlar varje partikel i en stråle för sig.

Röntgenfotoner skapas genom att elektroner med mycket hög energi (hög hastighet) träffar ett så kallat ”target”. Target sitter i huvudet på strålbehandlingsapparaten och är gjort av ett ämne med högt atomnummer. Fotonstrålningens karaktäristik beror på den elektronstråle som träffar target. I denna studie skulle bl.a. elektronstrålens energi, dess energispridning, intensitets fördelning och dess vinkelfördelning bestämmas med hjälp av Monte Carlo simuleringar. Det Monte Carlo program som användes i denna studie heter BEAMnrc/DOSXYZnrc. I BEAMnrc kan man bygga en virtuell strålbehandlingsapparat med alla dess väsentliga komponenter och i DOSXYZnrc kan man beräkna dosfördelningen i t.ex. vatten. Genom att simulera många miljoner partiklar kan man få en bild utav dosfördelningen.

När man gör små ändringar på den inkommande elektronstrålens olika parametrar kan man få en förståelse för hur dessa olika parametrar påverkar dosfördelningen i vatten. I denna studie skulle elektronstrålens olika parametrar bestämmas genom att matcha beräknade och experimentella dosfördelningar för två olika fotonenergier, 6 MV och 18 MV, som den undersökta strålbehandlingsapparaten har. Man kom fram till att fotonstrålen generades utav en elektronstråle med Gaussisk intensitets fördelning med bredden 1.2 och 1.5 mm, och med energin 6.4 MeV och 17.5 MeV, för att producera fotonstrålning med 6 MV respektive 18 MV. Med denna information om elektronstrålen kan man göra dosplaneringar med hjälp av Monte Carlo simuleringar där dosfördelningen är korrekt, även i gränser mellan områden av olika densitet. (Less)
Please use this url to cite or link to this publication:
author
Jutemark, Beatrice
supervisor
organization
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Strålterapi
language
English
id
2156953
date added to LUP
2011-09-13 10:17:19
date last changed
2011-12-06 14:05:52
@misc{2156953,
  abstract     = {{"This project concerns the precise characterization of one of the VARIAN accelerators used in the radiotherapy clinic at the Finsen Centre at Copenhagen University Hospital, Denmark.
Detailed characteristics of the clinical beam incident on the patient are almost impossible to measure. Even though manufacturers provide the necessary information about the specific accelerator, the models are constantly improving and the individual purchasers often adjust the machines to match e.g. the characteristics of a previous or of an existing accelerator. One particular concern is that it is impossible to get accurate information about the primary electron beam, such as its energy and its radial intensity distribution, as it leaves the accelerator vacuum window and hits the bremsstrahlung target. With the Monte Carlo technique it is possible to simulate the radiation transport through the accelerator head and achieve a better understanding of the clinical beam. The accuracy of the simulated beams were validated by the agreement with measured dose distributions.
In this project the photon beams from a Varian Clinac-23EX accelerator were investigated. This was done by simulating 6 and 18 MV photon beams for two different field sizes, 10 x 10 cm2 and 40 x 40 cm2, using the BEAMnrc and the DOSXYZnrc Monte Carlo code system. The linac geometry was used as input to the Monte Carlo code with specifications obtained from the vendor of the accelerator. Total dose measurements were performed in water using a Scanditronix-Wellhöfer RFA-300 beam scanner with an RK-8305 ionization chamber.
To validate the Monte Carlo model for the photon-beam output from the Varian Clinac-23EX, measured and calculated relative depth-dose data along the central-axis and dose profile at two different depths, Dmax and 10 cm, were matched. This required some fine tuning of the incident electron beam parameters, such as its energy, energy distribution and radial intensity distribution.

A good agreement between calculated and measured dose distributions was found, except near the surface for larger fields, particularly for the 18 MV photon beam. The final primary electron beam incident on the target, to get the best fit, was found to be monoenergetic with energies of 6.4 MeV and 17.5 MeV for the 6 MV and 18 MV photon beam, respectively. The optimal radial intensity distribution of the electron beams had a Gaussian spread with widths of 1.2 mm and 1.5 mm for the 6 MV and the 18 MV photon beam, respectively. This information will be important for future treatment planning, e.g. as a benchmark for clinical treatment planning systems.
ii"}},
  author       = {{Jutemark, Beatrice}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Monte Carlo based investigation of the influence of accelerator head geometry on megavolt photon beam quality in radiotherapy}},
  year         = {{2005}},
}