Advanced

Impacts of Northern Hemisphere teleconnections on the hydropower production in southern Sweden

Engström, Johanna LU (2011) In Lunds universitets Naturgeografiska institution - Seminar series NGEM01 20111
Dept of Physical Geography and Ecosystem Science
Abstract (Swedish)
45 % av Sveriges energi produceras av vattenkraft. Forskning har visat att det finns en positiv korrelation mellan den naturlig förekommande klimatvariationen Nord Atlantiska Oscillationen (NAO) och vattenkraftproduktionen i Norge och norra Sverige under vintertid. Sambandet är dock svagare i södra Sverige, vilket visar på att skulle kunna finnas andra storskaliga klimatvariationer som påverkar vattenkraftproduktionen i detta område.
En statistisk analys (Principal Component Analysis) resulterade i en tidsserie som väl representerade tidserierna från de 17 olika vattenkraftverken i fem lika vattendrag i södra Sverige. Denna tidsserie korreleraders sedan med tidsserier för fem olika index över naturliga klimatvariationer på norra... (More)
45 % av Sveriges energi produceras av vattenkraft. Forskning har visat att det finns en positiv korrelation mellan den naturlig förekommande klimatvariationen Nord Atlantiska Oscillationen (NAO) och vattenkraftproduktionen i Norge och norra Sverige under vintertid. Sambandet är dock svagare i södra Sverige, vilket visar på att skulle kunna finnas andra storskaliga klimatvariationer som påverkar vattenkraftproduktionen i detta område.
En statistisk analys (Principal Component Analysis) resulterade i en tidsserie som väl representerade tidserierna från de 17 olika vattenkraftverken i fem lika vattendrag i södra Sverige. Denna tidsserie korreleraders sedan med tidsserier för fem olika index över naturliga klimatvariationer på norra halvklotet: NAO, East Atlantic (EA), East Atlantic/Western Russia (EA/WR), Scandinavian (SCA) och Polar/Eurasia. Resultatet visar att NAO har störst positiv påverkan på vattenkraftproduktionen under vintern, medan SCA visar en nästan lika stark negativ korrelation. Under vår och sommar dominerar EA/WR produktionen med en signifikant negativ korrelation. Ingen tydlig signal hittades under höstmånaderna.
Baserat på antagandet att vattenkraftproduktionen dels beror på vattennivån i dammarna, dels på marknadens efterfrågan på elektricitet, vilket i sin tur beror mycket på säsong och lufttemperatur, gjordes även samma typ av korrelationsanalys mellan klimatindexen och data från sju oreglerade vattendrag och sex temperaturstationer i samma region. Vattenflödet visade en större variation än elproduktionen under hela året och något annorlunda korrelationer, medan temperaturerna visade liten variation och i huvudsak styrs av NAO, förutom under sommarmånaderna då SCA och POL visar starka positiva korrelationer. (Less)
Abstract
45 % of the Swedish energy is produced by hydropower. Previous researches have shown a positive correlation between the North Atlantic Oscillation (NAO) and the hydropower production in Norway and northern Sweden during winter time. The correlation is weak in southern Sweden, which indicates that there might be other climate patterns affecting this area.
A Spearman correlation was made between the times series of a Principal Component Analysis (PCA) of the production data from 17 hydropower stations in five different rivers located in southern Sweden and five different teleconnection indices: the NAO, The East Atlantic (EA), The East Atlantic/Western Russia (EA/WR), The Scandinavian (SCA) and the Polar/Eurasia (POL). The result showed... (More)
45 % of the Swedish energy is produced by hydropower. Previous researches have shown a positive correlation between the North Atlantic Oscillation (NAO) and the hydropower production in Norway and northern Sweden during winter time. The correlation is weak in southern Sweden, which indicates that there might be other climate patterns affecting this area.
A Spearman correlation was made between the times series of a Principal Component Analysis (PCA) of the production data from 17 hydropower stations in five different rivers located in southern Sweden and five different teleconnection indices: the NAO, The East Atlantic (EA), The East Atlantic/Western Russia (EA/WR), The Scandinavian (SCA) and the Polar/Eurasia (POL). The result showed seasonal variations in the effect of different teleconnections. In winter time the NAO causes the strongest signal, while the SCA shows an almost as strong negative signal. During spring and summer the EA/WR alone gives a significant negative signal. No significant correlation appeared during the fall.
Based on the assumption that the hydropower production depends on water availability in the dams and the demand from the market, which in turn is closely related to the season of the year and the air temperature, PCA analysis and Spearman correlations with the teleconnection indices were also made for seven unregulated river gages and six temperature stations in the same geographical region. The discharge show more variance than the hydropower production in all seasons and slightly different correlations, while the temperature show very little variability and mainly is ruled by the NAO in all seasons except for in the summer when the SCA and POL show strong positive correlations. (Less)
Please use this url to cite or link to this publication:
author
Engström, Johanna LU
supervisor
organization
alternative title
Naturliga klimatvariationers inverkan på vattenkraftproduktionen i södra Sverige
course
NGEM01 20111
year
type
H2 - Master's Degree (Two Years)
subject
keywords
geografi, ekosystemanalys, vattenkraft, klimatvariationer, södra Sverige, geography, ecosystem analysis, hydropower, teleconnection, southern Sweden
publication/series
Lunds universitets Naturgeografiska institution - Seminar series
report number
225
language
English
id
2438792
date added to LUP
2012-04-12 18:44:12
date last changed
2013-06-27 13:50:51
@misc{2438792,
  abstract     = {45 % of the Swedish energy is produced by hydropower. Previous researches have shown a positive correlation between the North Atlantic Oscillation (NAO) and the hydropower production in Norway and northern Sweden during winter time. The correlation is weak in southern Sweden, which indicates that there might be other climate patterns affecting this area.
A Spearman correlation was made between the times series of a Principal Component Analysis (PCA) of the production data from 17 hydropower stations in five different rivers located in southern Sweden and five different teleconnection indices: the NAO, The East Atlantic (EA), The East Atlantic/Western Russia (EA/WR), The Scandinavian (SCA) and the Polar/Eurasia (POL). The result showed seasonal variations in the effect of different teleconnections. In winter time the NAO causes the strongest signal, while the SCA shows an almost as strong negative signal. During spring and summer the EA/WR alone gives a significant negative signal. No significant correlation appeared during the fall.
Based on the assumption that the hydropower production depends on water availability in the dams and the demand from the market, which in turn is closely related to the season of the year and the air temperature, PCA analysis and Spearman correlations with the teleconnection indices were also made for seven unregulated river gages and six temperature stations in the same geographical region. The discharge show more variance than the hydropower production in all seasons and slightly different correlations, while the temperature show very little variability and mainly is ruled by the NAO in all seasons except for in the summer when the SCA and POL show strong positive correlations.},
  author       = {Engström, Johanna},
  keyword      = {geografi,ekosystemanalys,vattenkraft,klimatvariationer,södra Sverige,geography,ecosystem analysis,hydropower,teleconnection,southern Sweden},
  language     = {eng},
  note         = {Student Paper},
  series       = {Lunds universitets Naturgeografiska institution - Seminar series},
  title        = {Impacts of Northern Hemisphere teleconnections on the hydropower production in southern Sweden},
  year         = {2011},
}