Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Analyses of thermal conductivity from mineral composition and analyses by use of Thermal Conductivity Scanner : a study of thermal properties of Scanian rock types

Andolfsson, Thomas LU (2013) In Dissertations in Geology at Lund University GEOR02 20131
Department of Geology
Abstract
With an increase in demand for green energy the interest has grown in Geoenergy. The bedrock may function both as energy source and as energy storage, which makes it suitable for both heating and cooling. The thermal properties of the bedrock are essential when effectively planning and designing a geothermal energy well. This thesis focuses on research and study of the thermal properties of the Scanian bedrock, and on existing mineralogical data and samples accessible through Geological Survey of Sweden. Samples were chosen on the basis of the rock type and geographic location. Those rock units and areas that were not represented were sampled, if possible, during the summer of 2012. Sample preparation involved cutting them along several... (More)
With an increase in demand for green energy the interest has grown in Geoenergy. The bedrock may function both as energy source and as energy storage, which makes it suitable for both heating and cooling. The thermal properties of the bedrock are essential when effectively planning and designing a geothermal energy well. This thesis focuses on research and study of the thermal properties of the Scanian bedrock, and on existing mineralogical data and samples accessible through Geological Survey of Sweden. Samples were chosen on the basis of the rock type and geographic location. Those rock units and areas that were not represented were sampled, if possible, during the summer of 2012. Sample preparation involved cutting them along several axes. Upon review of the results, they were then compared against the calculated values. The calculated values deviated slightly, but are considered representative for the thermal properties. The results show a grouping into 5 groups, 3 sedimentary and 2 crystalline. The amount of quartz content in the crystalline rock types defines the 2 different groups. High quartz content gives a conductivity of 3.0 W/mK, whereas the crystalline rock units that have a low quartz content, have a slightly lower thermal conductivity (2.5 W/m•k). The sedimentary rocks are divided by type and age. The youngest is limestone with a low thermal conductivity, 1 W/m•k. Following in age is a large span of rock types which have a midrange thermal conductivity around 3.0 W/m•k. The highest thermal conductivity, 6 W/m•k, are recorded in Cambrian quartzite and sandstone. With the database related to this project, makes it possible to develop an prognosis map of the thermal conductivity of Scanian rocks. (Less)
Abstract (Swedish)
I ett ökat behov av grön energi, ökar även användadet av geoenergi. Berggrunden kan fungera som både energikälla och som energilager, vilket gör den passande för både värme- och kylanläggningar. Berggrundens termiska egenskaper är en av de viktigaste parametrarna vid planering av borrdjup och brunnsutformning för en optimal geotermisk anläggning. Detta mastersarbete innefattar en metodstudie och undersökning av olika bergarters termiska egenskaper. Arbetet utgår från befintliga mineralogiska data och prover från Skånes berggrund som finns tillgänglig via databaser vid Sveriges Geologiska Undersökning. Prover från databasen valdes efter typ och geografiskt läge. Kompletterande fältprovtagning genomfördes under sommaren 2012. Inför de... (More)
I ett ökat behov av grön energi, ökar även användadet av geoenergi. Berggrunden kan fungera som både energikälla och som energilager, vilket gör den passande för både värme- och kylanläggningar. Berggrundens termiska egenskaper är en av de viktigaste parametrarna vid planering av borrdjup och brunnsutformning för en optimal geotermisk anläggning. Detta mastersarbete innefattar en metodstudie och undersökning av olika bergarters termiska egenskaper. Arbetet utgår från befintliga mineralogiska data och prover från Skånes berggrund som finns tillgänglig via databaser vid Sveriges Geologiska Undersökning. Prover från databasen valdes efter typ och geografiskt läge. Kompletterande fältprovtagning genomfördes under sommaren 2012. Inför de termiska analyserna sågades proverna, beroende på lagring, skiktning etc. för att få plana ytor i olika riktningar. Resultaten av TCS analysen jämfördes mot beräknade teoretiska värden från mineralogiska analyser. Jämförelsen visade att de beräknade värdena är tillförlitliga vad avser värmeledningsförmågan på de skånska bergarterna. Resultaten visar på 5 olika värmeledningsgrupper, där 3 av dem är sedimentära och 2 kristallina. Kvartshalten i proven från de kristallina bergarterna påverkar tydligt värmeledningsförmågan. Hög kvartshalt ger en högre värmeledningsförmåga (3.0 W/m•K). De mindre kvartsrika ligger runt 2.5 W/m•K. Bland de sedimentära finns det tre grupper, en låg, 1 W/m•K, en mellan, 2.5 W/m•K, och en hög 6 W/m•K. Dessa grupper relaterar till ålder och bergart, där de mesozoiska och paleogena kalkstenarna har generellt låga värden, medan kambriska sandstenar och kvartsiter har de högsta värdena. Arbetet har resulterat i en stor mängd analysvärden och kunskap om den Skånska berggrundens värmeledande egenskaper som kan användas för att skapa prognoskartor över bergarternas värme-ledande egenskaper. (Less)
Please use this url to cite or link to this publication:
author
Andolfsson, Thomas LU
supervisor
organization
alternative title
Analys av värmeledningsförmågan av den skånska berggrunden, genom mineralfördelningsdata och användandet av en TCS, Thermal Conductivity Scanner
course
GEOR02 20131
year
type
H2 - Master's Degree (Two Years)
subject
keywords
bedrock, geoenergy, thermalconductivty, Scania
publication/series
Dissertations in Geology at Lund University
report number
361
language
English
id
3959653
date added to LUP
2013-08-19 10:21:22
date last changed
2013-08-19 10:21:22
@misc{3959653,
  abstract     = {{With an increase in demand for green energy the interest has grown in Geoenergy. The bedrock may function both as energy source and as energy storage, which makes it suitable for both heating and cooling. The thermal properties of the bedrock are essential when effectively planning and designing a geothermal energy well. This thesis focuses on research and study of the thermal properties of the Scanian bedrock, and on existing mineralogical data and samples accessible through Geological Survey of Sweden. Samples were chosen on the basis of the rock type and geographic location. Those rock units and areas that were not represented were sampled, if possible, during the summer of 2012. Sample preparation involved cutting them along several axes. Upon review of the results, they were then compared against the calculated values. The calculated values deviated slightly, but are considered representative for the thermal properties. The results show a grouping into 5 groups, 3 sedimentary and 2 crystalline. The amount of quartz content in the crystalline rock types defines the 2 different groups. High quartz content gives a conductivity of 3.0 W/mK, whereas the crystalline rock units that have a low quartz content, have a slightly lower thermal conductivity (2.5 W/m•k). The sedimentary rocks are divided by type and age. The youngest is limestone with a low thermal conductivity, 1 W/m•k. Following in age is a large span of rock types which have a midrange thermal conductivity around 3.0 W/m•k. The highest thermal conductivity, 6 W/m•k, are recorded in Cambrian quartzite and sandstone. With the database related to this project, makes it possible to develop an prognosis map of the thermal conductivity of Scanian rocks.}},
  author       = {{Andolfsson, Thomas}},
  language     = {{eng}},
  note         = {{Student Paper}},
  series       = {{Dissertations in Geology at Lund University}},
  title        = {{Analyses of thermal conductivity from mineral composition and analyses by use of Thermal Conductivity Scanner : a study of thermal properties of Scanian rock types}},
  year         = {{2013}},
}