Advanced

Internet-of-Things in Low Voltage Electricity Grids

Palmlund Wahlgren, Henrik LU (2016) In CODEN:LUTEDX/TEIE EIE920 20161
Industrial Electrical Engineering and Automation
Abstract
When evaluating future technologies for smart metering and automatic meter reading (AMR) E.ON Elnät Sverige AB has set up a pilot to test a communication technology supplied by Connode AB. Connode have developed a mesh radio solution based on 6LoWPAN, IPv6 over Low Powered Wireless Personal Area Network. By using this technology the communication unit on every meter is acting as both receiver and sender of IPKbased communication packets. The meters are aware of the other meters around them and automatically set up the best way to send a message. If two meters do not have a direct communication path to each other the message will be relayed via other meters until it reaches its destination. These meters will create a wireless network that... (More)
When evaluating future technologies for smart metering and automatic meter reading (AMR) E.ON Elnät Sverige AB has set up a pilot to test a communication technology supplied by Connode AB. Connode have developed a mesh radio solution based on 6LoWPAN, IPv6 over Low Powered Wireless Personal Area Network. By using this technology the communication unit on every meter is acting as both receiver and sender of IPKbased communication packets. The meters are aware of the other meters around them and automatically set up the best way to send a message. If two meters do not have a direct communication path to each other the message will be relayed via other meters until it reaches its destination. These meters will create a wireless network that covers a large area of the E.ON test site Hyllie in Malmö.
Connode has also developed a radio card that makes it possible to connect an embedded Linux platform, Intel Edsion, to the mesh network. By having this computer connected to the wireless network from the meters, this will enable a range of use cases within smart grid technologies taking advantage of using distributed computing in the low voltage grid.
This thesis has investigated what use cases this technology can be used for. Some of the use cases defined were also implemented by developing two demonstration boxes. The demonstration boxes made it possible to implement the use cases without having an actual grid to test on. The demonstration boxes represent a facility and a substation. In each box there is an embedded computer with a mesh radio communication module. The embedded computer has all grid information via the I/O from the demonstration boxes to be used in the use cases.
The use cases that were defined were among others, antiKislanding protection, prioritized automatic disconnection, substation controller and demand response controller. Of these the ones clearly implemented were the antiKislanding protection, prioritized automatic disconnection and the substation controller.

The following was performed during the thesis.
• Interviewing E.ON employees
• Defining use cases
• Design of simulation platform for use cases
• Construction of simulation platform
• Development of software for simulation platform
• Evaluation of 6LoWPAN and Connode’s implementation for usage in smart grid applications.

Using distributed computing in smart grid applications is clearly a very promising way to handle the future complexity of the modern grid. But it is still the communication technology that will be the crucial part of the solutions since some use cases will depend on high data throughput and transport integrity. This can somewhat be overcome by optimizing the architecture of such solutions but still for larger deployments the communication is the limiting factor.
The Connode solution seems very promising, but there are a few issues that are in the way when planning to use the technology for a larger implementation of smart grid. It needs to be stressed that the Connode solution of connecting embedded computers is just for development use and not for production, but some other factors are still in the way. One major issue is the separate IP address that the computer gets that is separated for the meters IP addresses. This makes the solution server unaware of the computer and separate systems must be implemented to be able to use the computer in distributed intelligence architecture. It is also needed to implement all the security features that is already implemented in the metering solution, the embedded computers are not able to use the same features from the Connode server. Also it is not possible for the distributed computers to talk directly to the meters as they must go via the Connode server. At last it was seen that for many use cases a full embedded Linux distribution might be somewhat excessive. (Less)
Popular Abstract
E.ON Elnät har i dagsläget cirka en miljlon elmätare uppsatta runtom i Sverige. De mätare som sattes upp i förra utrullningen 2004-2009 börjar bli gamla och E.ON undersöker vilka kommunikationstekniker som nästa generations mätare bör ha. E.ON har börjat testa mätare med en kommunikationsmodul från Connode AB. Denna modul möjliggör att kommunicera med mätaren via Internet och dessutom göra det trådlöst via ett IP-baserat meshat (maskat) radionätverk. I ett mesh-nätverk är varje nod både sändare och mottagare så nätet byggs upp allt eftersom man lägger till fler noder, i detta fallet elmätare. All kommunikation inom radion nätverket är en variant på IP som passar för att skickas över enklare radio. Till skillnad på vanligt WIFI som skickar... (More)
E.ON Elnät har i dagsläget cirka en miljlon elmätare uppsatta runtom i Sverige. De mätare som sattes upp i förra utrullningen 2004-2009 börjar bli gamla och E.ON undersöker vilka kommunikationstekniker som nästa generations mätare bör ha. E.ON har börjat testa mätare med en kommunikationsmodul från Connode AB. Denna modul möjliggör att kommunicera med mätaren via Internet och dessutom göra det trådlöst via ett IP-baserat meshat (maskat) radionätverk. I ett mesh-nätverk är varje nod både sändare och mottagare så nätet byggs upp allt eftersom man lägger till fler noder, i detta fallet elmätare. All kommunikation inom radion nätverket är en variant på IP som passar för att skickas över enklare radio. Till skillnad på vanligt WIFI som skickar standard IP och som ligger på 2,4 GHz ligger denna radio på 868 MHz vilket gör att den når mycket längre än WIFI, men kan inte skicka lika mycket data. På vissa punkter i nätverket måste det placeras ut gateways. En gateway är kopplingen till det “vanliga” Internet. Dessa kan antingen sitta direkt i mätaren genom att man lägger till möjligheten för uppkoppling till mobilnäten, eller en separat modul som kan kopplas in till bredband. Det meshade nätverkets fördelar är att om man vill kommunicera med en elmätare som är utom räckhåll för gatewayen så skickas meddelandena vidare via andra elmätare tills de kommer fram. Elmätarna sköter denna vidarebefodring av datan helt automatiskt och kontrollerar kontinuerligt vilka grannar de ser och kan kommunicera med och sätter upp bästa vägen till dessa grannar så att när ett meddelande kommer som inte är menat till just den elmätaren, vet den vart den skall skicka det.
Om E.ON sätter ut elmätare med denna tekniken kommer det finnas ett trådlöst nätverk att koppla in annan intressant utrustning på i alla de städer och orter som E.ON har elnät i. I examensarbetet har det området Hyllie i Malmö använts då det planeras att sättas upp cirka 300 mätare för att testa kommunikationen på större skala där. Connode AB har tagit fram en prototyping-lösning för sin radiokommunikation som bygger på en Intel Edison, en liten Linuxdator och en radiomodul från Connode AB. Varje liten apparat skulle då vara uppkopplad till Internet via radio och det är det som också kallas Internet of Things (IoT).
De användningsområden som undersöktes i examensarbetet var inom last-och produktionsstyrning, inkoppling av sensorer för att veta mer om lågspänningsnätverk samt skyddsfunktioner i elnätet. Till exempel att kunna styra laddning av många el-fordon så att man inte överlastade en transformator eller att fördröja uppvärmingen av hus i ett område om det blev en kall natt genom att ta hänsyn till den värme de redan hade i huset och på så sätt kunna göra lasten jämn på transformatorn.
Eftersom det inte fanns några mätare uppsatta och att det inte fanns några elnät där metoderna kunder testas och visas konstruerades två simulatorlådor för att simulera en anläggning och en nätstation. Utrustning i lådorna hade kommunikation till varandra genom radionätet som kom från elmätarna i lådorna och demonstrerade att tilltänkta metoder fungerade. (Less)
Please use this url to cite or link to this publication:
author
Palmlund Wahlgren, Henrik LU
supervisor
organization
alternative title
Distributed Intelligence using 6LoWPAN and embedded Linux
course
EIE920 20161
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Internet of Things, IoT, Smart Grids, Smart Grid, SGAP, Smart Grid Architecture Model, Energy, Demand Response, Intel Edison, Embedded Systems, 6LoWPAN, Mesh radio, Arduino, IEEE 802.15.4, Low Voltage Electricity Grid, Electricity Grid, Solar Power, Automation, Inverter control, Distributed Systems, Distributed Intelligence, Smart Meters, AMR, Automatic Meter Reading, AMI, Advanced Metering Infrastructure
publication/series
CODEN:LUTEDX/TEIE
report number
5382
language
English
id
8891904
date added to LUP
2017-09-29 11:49:10
date last changed
2017-09-29 11:49:10
@misc{8891904,
  abstract     = {When evaluating future technologies for smart metering and automatic meter reading (AMR) E.ON Elnät Sverige AB has set up a pilot to test a communication technology supplied by Connode AB. Connode have developed a mesh radio solution based on 6LoWPAN, IPv6 over Low Powered Wireless Personal Area Network. By using this technology the communication unit on every meter is acting as both receiver and sender of IPKbased communication packets. The meters are aware of the other meters around them and automatically set up the best way to send a message. If two meters do not have a direct communication path to each other the message will be relayed via other meters until it reaches its destination. These meters will create a wireless network that covers a large area of the E.ON test site Hyllie in Malmö. 
Connode has also developed a radio card that makes it possible to connect an embedded Linux platform, Intel Edsion, to the mesh network. By having this computer connected to the wireless network from the meters, this will enable a range of use cases within smart grid technologies taking advantage of using distributed computing in the low voltage grid. 
This thesis has investigated what use cases this technology can be used for. Some of the use cases defined were also implemented by developing two demonstration boxes. The demonstration boxes made it possible to implement the use cases without having an actual grid to test on. The demonstration boxes represent a facility and a substation. In each box there is an embedded computer with a mesh radio communication module. The embedded computer has all grid information via the I/O from the demonstration boxes to be used in the use cases. 
The use cases that were defined were among others, antiKislanding protection, prioritized automatic disconnection, substation controller and demand response controller. Of these the ones clearly implemented were the antiKislanding protection, prioritized automatic disconnection and the substation controller. 

The following was performed during the thesis. 
• Interviewing E.ON employees 
• Defining use cases 
• Design of simulation platform for use cases 
• Construction of simulation platform 
• Development of software for simulation platform 
• Evaluation of 6LoWPAN and Connode’s implementation for usage in smart grid applications. 

Using distributed computing in smart grid applications is clearly a very promising way to handle the future complexity of the modern grid. But it is still the communication technology that will be the crucial part of the solutions since some use cases will depend on high data throughput and transport integrity. This can somewhat be overcome by optimizing the architecture of such solutions but still for larger deployments the communication is the limiting factor. 
The Connode solution seems very promising, but there are a few issues that are in the way when planning to use the technology for a larger implementation of smart grid. It needs to be stressed that the Connode solution of connecting embedded computers is just for development use and not for production, but some other factors are still in the way. One major issue is the separate IP address that the computer gets that is separated for the meters IP addresses. This makes the solution server unaware of the computer and separate systems must be implemented to be able to use the computer in distributed intelligence architecture. It is also needed to implement all the security features that is already implemented in the metering solution, the embedded computers are not able to use the same features from the Connode server. Also it is not possible for the distributed computers to talk directly to the meters as they must go via the Connode server. At last it was seen that for many use cases a full embedded Linux distribution might be somewhat excessive.},
  author       = {Palmlund Wahlgren, Henrik},
  keyword      = {Internet of Things,IoT,Smart Grids,Smart Grid,SGAP,Smart Grid Architecture Model,Energy,Demand Response,Intel Edison,Embedded Systems,6LoWPAN,Mesh radio,Arduino,IEEE 802.15.4,Low Voltage Electricity Grid,Electricity Grid,Solar Power,Automation,Inverter control,Distributed Systems,Distributed Intelligence,Smart Meters,AMR,Automatic Meter Reading,AMI,Advanced Metering Infrastructure},
  language     = {eng},
  note         = {Student Paper},
  series       = {CODEN:LUTEDX/TEIE},
  title        = {Internet-of-Things in Low Voltage Electricity Grids},
  year         = {2016},
}