Advanced

Pumpvattenkraft och annan storskalig energilagring i Sverige - Ekonomiska förutsättningar till år 2030

Rensfeldt, Arvid LU (2017) FMI820 20171
Environmental Engineering (M.Sc.Eng.)
Environmental and Energy Systems Studies
Abstract (Swedish)
Runt om i världen pågår en omställning av energisystem på internationell, nationell och regional nivå av en omfattning som inte noterats på många årtionden. Omställningen innebär i första hand en övergång från fossila, icke förnybara energikällor till fossilfria, förnybara sådana med huvudsakligt syfte att begränsa de antropologiska klimatförändringarna och andra negativa effekter på miljön. Den förnybara energiproduktionen har många fördelar men en av de stora nackdelarna med dessa är att de är beroende av naturlig, intermittenta system som ligger bortom mänsklig kontroll, d.v.s. vi har begränsade möjligheter att styra produktionen från dessa källor. Detta påverkar speciellt elsystemet där konsumtion och produktion måste balanseras i... (More)
Runt om i världen pågår en omställning av energisystem på internationell, nationell och regional nivå av en omfattning som inte noterats på många årtionden. Omställningen innebär i första hand en övergång från fossila, icke förnybara energikällor till fossilfria, förnybara sådana med huvudsakligt syfte att begränsa de antropologiska klimatförändringarna och andra negativa effekter på miljön. Den förnybara energiproduktionen har många fördelar men en av de stora nackdelarna med dessa är att de är beroende av naturlig, intermittenta system som ligger bortom mänsklig kontroll, d.v.s. vi har begränsade möjligheter att styra produktionen från dessa källor. Detta påverkar speciellt elsystemet där konsumtion och produktion måste balanseras i realtid för att fungera korrekt och en ökad andel intermittent, förnybar produktion kan därmed potentiellt hota systemets stabilitet och leveranssäkerhet. Ett sätt att lösa dessa problem och överbrygga gapet mellan en stokastisk produktion och konsumtion är med hjälp av energilager. Energilagring för elektricitet kan göras genom flera olika tekniker och på varierande skala. Storskaliga energilager kan lagra energi över perioder på flera timmar till månader och ansluts på region- eller stamnätsnivå. Idag finns mycket lite storskalig energilagring i Sverige, huvudsakligen till följd av ett lågt behov. Det finns dock indikationer på att behovet för den typ av tjänster som storskaliga energilager kan tillhandahålla kommer att öka i Sverige i framtiden. I denna studie granskas trender i, huvudsakligen det svenska men också europeiska, elsystemen i syfte att undersöka hur de ekonomiska förutsättningarna för storskalig energilagring kommer att utvecklas i Sverige fram till 2030. Denna del av studien är teknikneutral och täcker in utvecklingen av flera olika faktorer vilka kan påverka de framtida ekonomiska förutsättningarna för storskalig energilagring. I studien görs också en förstudie av ett pumpkraftverk på platsen X i Sverige. Förstudien innehåller en övergripande utformning av pumpkraftverket samt simulering av driften för att undersöka lönsamheten utifrån dagens förutsättningar och utvecklingen till år 2030. Denna studie syftar delvis till att undersöka lämpligheten för en specifik plats med ändamålet att anlägga ett pumpkraftverk men också till att konkretisera de utmaningar som storskaliga energilager står inför och effekterna av olika potentiella förändringar i elsystemets struktur och funktion.

Studien visar att förutsättningarna för storskalig energilagring sannolikt kommer att förbättras och att den känsligaste parametern för denna utveckling är prisvolatiliteten på dagen-föremarknaden för elektrisk energi, Nord Pool Spot. Studien visar också på att hur prisvolatiliteten kommer att utvecklas beror till stor del på förändringar som sker utanför Sveriges gränser. Förstudien tyder på att platsen X är lämplig för etablering av ett pumpkraftverk då den relativa kostnaden per kapacitet är förhållandevis låg och då lönsamhetsanalysen ger ett positivt resultat utifrån det framtagna scenariot för år 2030. (Less)
Abstract
All around the world, energy systems are transforming at the international, national and regional level and at a rate not seen for many decades. This transformation primarily involves a transition away from fossil, non-renewable energy sources and to fossil-free, renewable ones with the primary purpose of halting the process of anthropological climate change and limiting other adverse effects on the environment. Renewable energy production has many advantages, but one of the major drawbacks of many of these technologies is that they depend on natural, intermittent systems which are beyond human control. That is to say, we have limited capabilities to control production from these sources. This especially affects the electrical system where... (More)
All around the world, energy systems are transforming at the international, national and regional level and at a rate not seen for many decades. This transformation primarily involves a transition away from fossil, non-renewable energy sources and to fossil-free, renewable ones with the primary purpose of halting the process of anthropological climate change and limiting other adverse effects on the environment. Renewable energy production has many advantages, but one of the major drawbacks of many of these technologies is that they depend on natural, intermittent systems which are beyond human control. That is to say, we have limited capabilities to control production from these sources. This especially affects the electrical system where consumption and production must be balanced in real time in order to function properly, and an increased share of electricity production from intermittent, renewable sources can therefore potentially threaten system stability and security of supply. One way to solve these problems and bridge the gap between a stochastic production and consumption is through energy storage. Energy storage for electricity can be done through several different technologies and on varying scale. Large-scale energy storage can store energy over periods of several hours to months and connect to the electrical grid at the medium- or high voltage levels. Today, there are very few large-scale energy storage facilities in Sweden, mainly due to low demand. However, there are indications that the need for the types of services that large-scale energy storage can provide will increase in Sweden in the future. In this study, trends in the Swedish but also European electricity systems are examined to investigate how the economic conditions for large-scale energy storage is likely to develop in Sweden until the year 2030. This part of the study is technology neutral and covers the development of several factors which may have an effect on the future economic conditions for large-scale energy storage. The study also contains a preliminary study of a prospective pumped hydro storage plant at the site X in Sweden. The pre-study contains an overall design of the pumped storage plant and simulation of the operation of that plant to examine profitability based on current conditions and estimated conditions for 2030. The pre-study aims partly to investigate the suitability of site X with the purpose of constructing a pumped storage plant, but also to concretize the challenges that large-scale energy storage is facing and the effects of potential developments in the structure and function of the electrical energy system.

The study shows that the economic conditions for large-scale energy storage are likely to improve and that the most sensitive parameter for this improvement is the price volatility of the day-ahead electricity market, Nord Pool Spot. The study also shows that how the price volatility on Nord Pool Spot will develop is largely affected by changes that occur outside of Sweden’s borders. The preliminary study indicates that site X is suitable for establishing a pumped storage plant as relative cost per capacity unit is low and as the profitability analysis returns positive results based on the scenario developed for 2030. (Less)
Popular Abstract
Pumped hydro storage and other large-scale energy storage can play an integral part in sustainable energy systems of the future. With an increasing share of electricity produced by renewable, intermittent sources the need for flexibility and balancing capacity will increase. Previous studies and the simulations performed in this thesis show that the financial conditions for large-scale energy storage are likely to improve in the coming decades but whether they will become feasible from a corporate perspective depends greatly on the energy market and to what extent it will remunerate the supply of various ancillary services.
Please use this url to cite or link to this publication:
author
Rensfeldt, Arvid LU
supervisor
organization
alternative title
The future of pumped hydro storage and other large-scale energy storage in Sweden - Development of economic conditions until 2030
course
FMI820 20171
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Energilager, pumpvattenkraft, förnybar energi, energisystem, simulering, framtidsscenarier
report number
ISRN LUTFD2/TFEM-- 17/5121
ISSN
1102-3651
language
Swedish
id
8921971
date added to LUP
2017-08-23 09:28:55
date last changed
2017-08-23 09:28:55
@misc{8921971,
  abstract     = {All around the world, energy systems are transforming at the international, national and regional level and at a rate not seen for many decades. This transformation primarily involves a transition away from fossil, non-renewable energy sources and to fossil-free, renewable ones with the primary purpose of halting the process of anthropological climate change and limiting other adverse effects on the environment. Renewable energy production has many advantages, but one of the major drawbacks of many of these technologies is that they depend on natural, intermittent systems which are beyond human control. That is to say, we have limited capabilities to control production from these sources. This especially affects the electrical system where consumption and production must be balanced in real time in order to function properly, and an increased share of electricity production from intermittent, renewable sources can therefore potentially threaten system stability and security of supply. One way to solve these problems and bridge the gap between a stochastic production and consumption is through energy storage. Energy storage for electricity can be done through several different technologies and on varying scale. Large-scale energy storage can store energy over periods of several hours to months and connect to the electrical grid at the medium- or high voltage levels. Today, there are very few large-scale energy storage facilities in Sweden, mainly due to low demand. However, there are indications that the need for the types of services that large-scale energy storage can provide will increase in Sweden in the future. In this study, trends in the Swedish but also European electricity systems are examined to investigate how the economic conditions for large-scale energy storage is likely to develop in Sweden until the year 2030. This part of the study is technology neutral and covers the development of several factors which may have an effect on the future economic conditions for large-scale energy storage. The study also contains a preliminary study of a prospective pumped hydro storage plant at the site X in Sweden. The pre-study contains an overall design of the pumped storage plant and simulation of the operation of that plant to examine profitability based on current conditions and estimated conditions for 2030. The pre-study aims partly to investigate the suitability of site X with the purpose of constructing a pumped storage plant, but also to concretize the challenges that large-scale energy storage is facing and the effects of potential developments in the structure and function of the electrical energy system.

The study shows that the economic conditions for large-scale energy storage are likely to improve and that the most sensitive parameter for this improvement is the price volatility of the day-ahead electricity market, Nord Pool Spot. The study also shows that how the price volatility on Nord Pool Spot will develop is largely affected by changes that occur outside of Sweden’s borders. The preliminary study indicates that site X is suitable for establishing a pumped storage plant as relative cost per capacity unit is low and as the profitability analysis returns positive results based on the scenario developed for 2030.},
  author       = {Rensfeldt, Arvid},
  issn         = {1102-3651},
  keyword      = {Energilager,pumpvattenkraft,förnybar energi,energisystem,simulering,framtidsscenarier},
  language     = {swe},
  note         = {Student Paper},
  title        = {Pumpvattenkraft och annan storskalig energilagring i Sverige - Ekonomiska förutsättningar till år 2030},
  year         = {2017},
}