Advanced

Investigation of rigid building block made from bio-based material

O'Bryan, Timothy LU and Kuan, Dick LU (2017) KTE720 20162
Centre for Analysis and Synthesis
Abstract
Plastics for everyday use are made from fossile resources. With the demand for plastics increasing every year, a sustainable development for plastic products is a growing challenge. A major issue is the depletion of the non-renewable fossile resources, which means that sooner or later alternatives to the conventional plastics are needed. With this problem in mind, this work focuses on the development of more environmentally friendly building blocks for plastic production.
Polycarbonates are a group of plastics with high durability that can be recycled several times. They have good mechanical properties which are desirable in the electronics and car industry respectively. Approximately 4,3 million tons in global demand was reported in... (More)
Plastics for everyday use are made from fossile resources. With the demand for plastics increasing every year, a sustainable development for plastic products is a growing challenge. A major issue is the depletion of the non-renewable fossile resources, which means that sooner or later alternatives to the conventional plastics are needed. With this problem in mind, this work focuses on the development of more environmentally friendly building blocks for plastic production.
Polycarbonates are a group of plastics with high durability that can be recycled several times. They have good mechanical properties which are desirable in the electronics and car industry respectively. Approximately 4,3 million tons in global demand was reported in 2015. The demand is expected to increase to 7,72 million tons by 2024 within Europe according to Plastics Europe. A disadvantage with most polycarbonates is that one of the major components is Bisphenol A (BPA). This compound is made from fossile material. In this work, an environmentally friendly alternative to bisphenol A was developed, the so called “biobisphenol” molecule. It can be made from reagents of bio-based origin. This is an advantage compared to BPA.
It was found that the biobisphenol could be manufactured without the use of organic solvents or catalysts. The synthesis could be performed with a minimal amount of chemicals, which made it an attractive method to industry from a cost and environmental point of view. This solvent-free approach was, however, time consuming. It took at least 2 days to produce approximately 4,5 g (68% yield). A more conventional manufacturing process, with organic solvent and catalyst, was also attempted. This method was considerably faster, but produced only 1,9 g (36% yield) within an hour.
A closer look at the purity of the manufactured biobisphenol revealed two distinct solid forms. In “flake” form the material had a melting point at 170 0C and in “thread” form it was 180 0C. Results from other analytical methods showed that biobisphenol with a high purity had been manufactured by both the conventional and the more environmentally friendly method.
Experiments regarding the manufacture of plastics based on the biobisphenol was also performed. The resulting plastic material had very poor solubility in most organic solvents such as acetone and chloroform. To improve the solubility, plastics where biobisphenol is combined with different components should be explored. More research is needed in order to evaluate if the biobisphenol can replace BPA in the production of plastics. (Less)
Popular Abstract (Swedish)
Plaster som används för dagligt bruk består till stor del av fossila ämnen. Med ökad efterfrågan och produktion för varje år, är en hållbar utveckling för plaster en växande utmaning. Ett av de stora problemen är förbrukningen av de icke förnyelsebara fossila källorna, vilket medför att förr eller senare behövs alternativ till de konventionella plasterna. Med detta problem i åtanke, så fokuserar det här arbetet på framtagning av miljövänliga byggblock till plaster.

Polykarbonater är en grupp plaster som har hög tålighet och kan återanvändas flera gånger. Deras starka mekaniska egenskaper är väldigt eftertraktade inom elektronik- och bilbranschen. Uppemot 4,3 miljoner ton i global efterfrågan rapporterades år 2015. Den förväntas stiga... (More)
Plaster som används för dagligt bruk består till stor del av fossila ämnen. Med ökad efterfrågan och produktion för varje år, är en hållbar utveckling för plaster en växande utmaning. Ett av de stora problemen är förbrukningen av de icke förnyelsebara fossila källorna, vilket medför att förr eller senare behövs alternativ till de konventionella plasterna. Med detta problem i åtanke, så fokuserar det här arbetet på framtagning av miljövänliga byggblock till plaster.

Polykarbonater är en grupp plaster som har hög tålighet och kan återanvändas flera gånger. Deras starka mekaniska egenskaper är väldigt eftertraktade inom elektronik- och bilbranschen. Uppemot 4,3 miljoner ton i global efterfrågan rapporterades år 2015. Den förväntas stiga upp till 7,72 miljoner ton vid år 2024 inom Europa enligt Plastics Europe. En nackdel med de flesta polykarbonater är att en stor beståndsdel utgörs av komponenten bisfenol A som är tillverkad av fossila ämnen. I detta arbetet, togs ett miljövänligt alternativ till bisfenol A fram, den s.k. ”biobisfenol”-molekylen. Denna molekyl kan tillverkas av startmaterial med biologiskt ursprung. Detta utgör en fördel gentemot bisfenol A.

Det visade sig att biobisfenol kunde framställas utan användning av organiska lösningsmedel eller katalys. Syntesen kunde genomföras med minimal kemikaliehantering, vilket utifrån ett miljö- och ekonomiperspektiv är attraktivt för industrin. Produktionen av biobisfenol med denna metod var dock tidskrävande. Det tog minst två dagar för att producera ca. 4,5 g biobisfenol (68% utbyte). En mer konventionell tillverkningsmetod, med organiskt lösningsmedel och katalysator undersöktes också. Denna metod var betydligt snabbare men producerade i bästa fall 1,9 g biobisfenol (36% utbyte) inom en timme.
En närmare titt på renheten för det syntetiserade materialet avslöjade två distinkta fasta former. I ”flingform” hade materialet en smältpunkt på 170 0C och i ”trådform” var smältpunkten på 180 0C. Resultat från andra analysmetoder visade att biobisfenol med hög renhet hade framställts genom både den konventionella och den mer miljövänliga metoden.

Inledande försök till framställning av plaster baserade på biobisfenol gjordes dessutom. Materialet hade väldigt dålig löslighet i de flesta organiska lösningsmedel som tex. aceton och kloroform. För att förbättra lösligheten, bör plaster där biobisfenol kombineras med andra komponenter undersökas. I allmänhet krävs mer forskning kring plasttillverkningen för att avgöra om biobisfenol kan ersätta bisfenol A eller inte. (Less)
Please use this url to cite or link to this publication:
author
O'Bryan, Timothy LU and Kuan, Dick LU
supervisor
organization
course
KTE720 20162
year
type
H2 - Master's Degree (Two Years)
subject
keywords
polymer technology, polymerteknologi
language
English
id
8924889
date added to LUP
2017-09-26 08:55:42
date last changed
2017-09-26 08:55:42
@misc{8924889,
  abstract     = {Plastics for everyday use are made from fossile resources. With the demand for plastics increasing every year, a sustainable development for plastic products is a growing challenge. A major issue is the depletion of the non-renewable fossile resources, which means that sooner or later alternatives to the conventional plastics are needed. With this problem in mind, this work focuses on the development of more environmentally friendly building blocks for plastic production.
Polycarbonates are a group of plastics with high durability that can be recycled several times. They have good mechanical properties which are desirable in the electronics and car industry respectively. Approximately 4,3 million tons in global demand was reported in 2015. The demand is expected to increase to 7,72 million tons by 2024 within Europe according to Plastics Europe. A disadvantage with most polycarbonates is that one of the major components is Bisphenol A (BPA). This compound is made from fossile material. In this work, an environmentally friendly alternative to bisphenol A was developed, the so called “biobisphenol” molecule. It can be made from reagents of bio-based origin. This is an advantage compared to BPA.
It was found that the biobisphenol could be manufactured without the use of organic solvents or catalysts. The synthesis could be performed with a minimal amount of chemicals, which made it an attractive method to industry from a cost and environmental point of view. This solvent-free approach was, however, time consuming. It took at least 2 days to produce approximately 4,5 g (68% yield). A more conventional manufacturing process, with organic solvent and catalyst, was also attempted. This method was considerably faster, but produced only 1,9 g (36% yield) within an hour.
A closer look at the purity of the manufactured biobisphenol revealed two distinct solid forms. In “flake” form the material had a melting point at 170 0C and in “thread” form it was 180 0C. Results from other analytical methods showed that biobisphenol with a high purity had been manufactured by both the conventional and the more environmentally friendly method.
Experiments regarding the manufacture of plastics based on the biobisphenol was also performed. The resulting plastic material had very poor solubility in most organic solvents such as acetone and chloroform. To improve the solubility, plastics where biobisphenol is combined with different components should be explored. More research is needed in order to evaluate if the biobisphenol can replace BPA in the production of plastics.},
  author       = {O'Bryan, Timothy and Kuan, Dick},
  keyword      = {polymer technology,polymerteknologi},
  language     = {eng},
  note         = {Student Paper},
  title        = {Investigation of rigid building block made from bio-based material},
  year         = {2017},
}