On the divergence of the Rogers--Ramanujan continued fraction on the Salem points
(2019) In Master's Theses in Mathematical Sciences MATM01 20182Mathematics (Faculty of Engineering)
Mathematics (Faculty of Sciences)
- Abstract
- The Rogers-Ramanujan continued fraction converges inside the unit circle and diverges outside of it. Its behavior on the unit circle is subtle, there is a countable dense set where it converges, a countable dense set where it diverges, and for the remaining uncountable set the question of convergence is mostly unsolved. The Bowman-McLaughlin conjecture says that we have divergence almost everywhere on the unit circle. We show some evidence for the divergence on a Salem point.
- Popular Abstract (Swedish)
- På divergensen av Rogers-Ramanujans kedjebråk i Salem punkter.
Rogers-Ramanujans kedjebråk konvergerar inuti enhetscirkeln och divergerar utanför den. Dess beteende på enhetscirkeln är subtil, det finns en uppräknelig tät mängd där det konvergerar, en uppräknelig tät mängd där det divergerar, och för den återstående överuppräkneliga mängden är frågan om konvergens mestadels olöst. Bowman-McLaughlin-förmodan säger att vi har divergens nästan överallt på enhetscirkeln. Vi visar några bevis för divergensen på en Salem-punkt.
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/8973182
- author
- Hindov, Raul LU
- supervisor
-
- Sandra Pott LU
- Tomas Persson LU
- organization
- course
- MATM01 20182
- year
- 2019
- type
- H2 - Master's Degree (Two Years)
- subject
- keywords
- Continued fractions, Rogers-Ramanujan, Salem numbers
- publication/series
- Master's Theses in Mathematical Sciences
- report number
- LUNFMA-3102-2019
- ISSN
- 1404-6342
- other publication id
- 2019:E11
- language
- English
- id
- 8973182
- date added to LUP
- 2024-09-30 14:39:43
- date last changed
- 2024-09-30 14:39:43
@misc{8973182, abstract = {{The Rogers-Ramanujan continued fraction converges inside the unit circle and diverges outside of it. Its behavior on the unit circle is subtle, there is a countable dense set where it converges, a countable dense set where it diverges, and for the remaining uncountable set the question of convergence is mostly unsolved. The Bowman-McLaughlin conjecture says that we have divergence almost everywhere on the unit circle. We show some evidence for the divergence on a Salem point.}}, author = {{Hindov, Raul}}, issn = {{1404-6342}}, language = {{eng}}, note = {{Student Paper}}, series = {{Master's Theses in Mathematical Sciences}}, title = {{On the divergence of the Rogers--Ramanujan continued fraction on the Salem points}}, year = {{2019}}, }