Approximation of Pi
(2019) In Bachelor's Theses in Mathematical Sciences FMAL01 20191Mathematics (Faculty of Engineering)
- Abstract
- The inverse tangent function can be used to approximate pi. When approximating pi, the convergence of infinite series or Products are of great importance for the accuracy in the digits in pi. This thesis will present historical Formulas used to approximate pi, especially Gregory-Leibniz and Machin's. Also, the unique Machin two-term formulas will be presented and discussed to show that Machin's way of calculating pi has had great impact on calculating this number.
- Popular Abstract (Swedish)
- Vi diskuterar metoder för att hitta närmevärden till pi via serieutvecklingar och komplexa tal, med hjälp av så kallade Machin-liknande formler. Vi ger även en kortfattad beskrivning av appxoixmationsmetoder som använts genom historien.
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/8983341
- author
- Jansson, Madeleine LU
- supervisor
- organization
- course
- FMAL01 20191
- year
- 2019
- type
- M2 - Bachelor Degree
- subject
- publication/series
- Bachelor's Theses in Mathematical Sciences
- report number
- LUTFMA-4006-2019
- ISSN
- 1654-6229
- other publication id
- 2019:K15
- language
- English
- id
- 8983341
- date added to LUP
- 2019-06-20 10:46:44
- date last changed
- 2024-09-30 11:09:19
@misc{8983341, abstract = {{The inverse tangent function can be used to approximate pi. When approximating pi, the convergence of infinite series or Products are of great importance for the accuracy in the digits in pi. This thesis will present historical Formulas used to approximate pi, especially Gregory-Leibniz and Machin's. Also, the unique Machin two-term formulas will be presented and discussed to show that Machin's way of calculating pi has had great impact on calculating this number.}}, author = {{Jansson, Madeleine}}, issn = {{1654-6229}}, language = {{eng}}, note = {{Student Paper}}, series = {{Bachelor's Theses in Mathematical Sciences}}, title = {{Approximation of Pi}}, year = {{2019}}, }