Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Undersökning av viskositet hos asfaltbruk - Mätningar med rotationsviskosimeter på bruk med olika fillersorter och mängder

Rosqvist, Max LU (2019) VTVL01 20191
Transport and Roads
Abstract (Swedish)
Bitumen och dess egenskaper har länge ansetts vara den viktigaste faktorn för en asfalts funktion. Egenskaperna som finns är hos bitumen är relativt enkla att kontrollera. Eftersom egenskaperna är relativt lätta att kontrollera och mycket kunskap redan finns om bitumen har dess egenskaper ansetts vara det som är avgörande gällande hur en asfaltbeläggning kommer att agera då den brukas. Mätmetoderna, mjukpunkt och penetrationstal, som används för att kvantifiera egenskaperna hos bitumen är relativt lättanvända. Vid användning av mätmetoderna ges ett mätetal på bituminets beteende. Mätetalen som ges vid mätmetoderna har, under flera år av uppföljning och undersökning, kunnat kopplas till asfaltens egenskaper. Metoderna som används är... (More)
Bitumen och dess egenskaper har länge ansetts vara den viktigaste faktorn för en asfalts funktion. Egenskaperna som finns är hos bitumen är relativt enkla att kontrollera. Eftersom egenskaperna är relativt lätta att kontrollera och mycket kunskap redan finns om bitumen har dess egenskaper ansetts vara det som är avgörande gällande hur en asfaltbeläggning kommer att agera då den brukas. Mätmetoderna, mjukpunkt och penetrationstal, som används för att kvantifiera egenskaperna hos bitumen är relativt lättanvända. Vid användning av mätmetoderna ges ett mätetal på bituminets beteende. Mätetalen som ges vid mätmetoderna har, under flera år av uppföljning och undersökning, kunnat kopplas till asfaltens egenskaper. Metoderna som används är accepterade inom branschen då de visat sig lättanvända och tydligt kopplade till verkligheten. Mjukpunkt och penetrationstal brister dock då bituminet blandas med tillsatser och nämnda metoder kan inte beskriva vad som händer med bituminet efter blandning då det saknas historisk kunskap.

Sedan några år tillbaka har det framkommit att det är asfaltbruket, det som uppstår vid blandning av bitumen och filler, som styr asfaltens eftergivlighet, stabilitet och i förlängningen hållbarhet och inte bituminet. En standard för utvärderingar och tester har dock aldrig gjorts på asfaltbruk i något omfattande arbete. Det bristande intresset för asfaltbruk beror förmodligen på svårigheterna som finns att mäta materialets egenskaper då materialet inte lämpar sig för de traditionella mätmetoder som finns. En annan anledning kan vara att fillerns egenskaper kan variera beroende på vilket asfaltverk fillern kommer från och ibland kan fillerns egenskaper variera över tid. Verkligheten beter sig som sådan men det komplicerar även utformningen av regelverk för tillverkning och kvalitetskontroller.

Syftet med examensarbetet är att undersöka hur viskositeten hos asfaltbruk påverkas med filler från olika asfaltverk i en rotationsviskosimeter av typ Brookfield, RVB i ett laboratorium på LTH, Lund. Även olika halter av filler i asfaltbruket undersöks. Syftet är även att utveckla mätmetoden med RVB.

RVB har använts och utvecklats i en rad examensarbeten på LTH och har visat upp god precision för rent bitumen och bitumen med tillsatser som vax och polymerer. Trots möjliga problem med homogenisering och separation verkar metoden kunna fungera lika bra för fillerinblandat asfaltbruk.

Resultaten från RVB:n presenterades grafiskt i Heukelom BTCD-diagram i form av serier av mätpunkter sammanbundna till viskositetslinjer. BTDC-diagrammet visar hur viskositet och temperatur förhåller sig till varandra och hur bitumen reagerar på olika filler samt olika fillerhalter vid samma temperaturer.

Alla mätvärden i en serie utgörs av enkelmätningar. Inga ommätningar har gjorts eller strykningar av extremvärden. Med hjälp av WLF-sambandet, som är viskositetsmätningarnas masterkurva, kan viskositeten beräknas vid valfri temperatur och omvänt, temperaturen kan beräknas vid valfri viskositet. Det senare används för att beräkna Mjukpunkt enligt RVB. Efter genomgång av resultaten valdes en viskositet som kan anses vara acceptabel under blandningsförloppet. Temperaturen vid denna viskositet är vid sidan av Mjukpunkt jämförelseparameter för de olika asfaltbruken och respektive fillersorter.

Från resultaten kan man se att filler från de studerade, vanligt förekommande bergmaterialen tycks inte skilja sig åt i förstyvning av asfaltbruket. Däremot har mängden filler stor betydelse och frågan är hur Filler/bitumen-kvoten verkligen ser ut på asfaltverken. Det kontrolleras lätt i sammansättningsanalysen av asfaltmassorna och i asfaltverkens doseringsrecept.

Utbyte av förekommande naturfiller är inte särskilt populärt av ekonomiska och praktiska skäl (man har kanske redan ett överskott) men filler från kalkberg har en gynnsam inverkan på asfaltbrukets smidighet. Det är ingen nyhet men nu finns det mätetal på effekten.

Cement har kraftigare förstyvande inverkan på asfaltbruk jämfört med övriga fillertyper. Eftersom det inte används som filler i Sverige utan bara som vidhäftningsmedel i små tillsatser har det ingen praktisk betydelse.

Ett högre Rigdenhålrum anses orsaka ökad förstyvning av asfaltbruk. Fallet med cement, som har relativt lågt Rigdenhålrum, visar att det måste finnas andra faktorer som betyder mer. Sådana faktorer kan vara kornfördelningen, som inte kunde bestämmas här, eller kemisk inverkan. (Less)
Abstract
Bitumen and its properties have long been considered the most important factor in the function of asphalt. The attributes that are present in bitumen are relatively easy to control. Since the attributes are relatively easy to control and a lot of knowledge already exists of bitumen its attributes are considered to be the decisive factor in how an asphalt coating will act when it is being used. The measurement methods, softening point and penetration numbers, which are used to quantify the attributes of bitumen are relatively easy to use. When using the measurement methods, a measurement number is given on the behavior of the bitumen. The measurement figures given in the measurement methods have, for several years of follow-up and... (More)
Bitumen and its properties have long been considered the most important factor in the function of asphalt. The attributes that are present in bitumen are relatively easy to control. Since the attributes are relatively easy to control and a lot of knowledge already exists of bitumen its attributes are considered to be the decisive factor in how an asphalt coating will act when it is being used. The measurement methods, softening point and penetration numbers, which are used to quantify the attributes of bitumen are relatively easy to use. When using the measurement methods, a measurement number is given on the behavior of the bitumen. The measurement figures given in the measurement methods have, for several years of follow-up and examination, been able to be linked to the properties of the asphalt. The methods used are accepted in the industry as they have proved to be easy to use and clearly linked to reality. Softening point and penetration number, however, fail when the bitumen is mixed with additives and said methods cannot describe what happens to the bitumen after mixing since there is no historical knowledge.

For some years now, it has emerged that it is the asphalt mastics, that comes from mixing bitumen and filler, which controls the asphalt's resilience, stability and, in the long run, durability and not the bitumen. A standard for evaluations and tests, however, has never been made on asphalt plaster in any extensive work. The lack of interest in asphalt plaster is probably due to the difficulties that exist in measuring the properties of the material since the material is not suitable for the traditional measuring methods that exist. Another reason may be that the properties of the filler may vary depending on which asphalt plant the filler comes from and sometimes the properties of the filler may vary over time. Reality behaves as such, but it also complicates the design of regulations for manufacturing and quality controls.

In this thesis work, the viscosity of asphalt mastics is examined with filler from various asphalt plants in a rotary viscometer of type Brookfield, RVB in a laboratory at LTH, Lund. Different levels of filler in the asphalt mastics are also investigated.

RVB has been used and developed in a number of degree projects at LTH and has shown good precision for pure bitumen and bitumen with additives such as wax and polymers. Despite possible problems with homogenization and segregation, the method seems to work equally well for filler-mixed asphalt mastics.

The results from the RVB were graphically presented in Heukelom BTCD diagram in the form of series of measurement points linked to viscosity lines. The BTDC diagram shows how the viscosity and temperature relate to each other and how bitumen reacts to different filler and different filler contents at the same temperatures.

All measurements in a series consist of single measurements. No reminders have been made or deletions of the extremes. Using the WLF connection, which is the master curve of the viscosity measurements, the viscosity can be calculated at any temperature and vice versa, the temperature can be calculated at any viscosity. The latter is used to calculate Soft Point according to RVB. After reviewing the results, a viscosity was chosen which can be considered acceptable during the mixing process. The temperature at this viscosity, in addition to the soft point, is the comparative parameter for the various asphalt uses and the respective types of fillers.

From the results it can be seen that filler from the studied, commonly occurring rock materials does not appear to differ in stiffening of the asphalt mastics. However, the amount of filler has great influence and the question is how the Fille/Bitumin value really looks like on the asphalt works. It is easily controlled in the compositional analysis of the asphalt mixes and in the asphalt plant dosing recipes.

Replacement of existing natural filler is not very popular for economic and practical reasons (one may already have a surplus) but lime rock filler has a beneficial effect on the flexibility of asphalt use. It is no news, but here are measurement numbers to illustrate the effect.

Cement has a stronger stiffening effect on asphalt mastics compared to other types of fillers. Since it is not used as filler in Sweden but only as an adhesive additive in small quantities, it is of no practical significance.

A higher Rigden porosity is considered to cause increased stiffening of asphalt use. The case of cement, which has relatively low Rigden porosity, shows that there must be other factors of greater importance. Such factors may be the grain size distribution, which could not be determined here, or chemical effects. (Less)
Please use this url to cite or link to this publication:
author
Rosqvist, Max LU
supervisor
organization
alternative title
Examination of Viscosity in Asphalt Coating - Measurements with rotary viscometers on asphalt coating with different types of fillers and quantities
course
VTVL01 20191
year
type
M3 - Professional qualifications ( - 4 Years)
subject
keywords
Filler, bitumen, asfaltbruk, viskositet, rotationsviskosimeter
report number
ISRN LUTHBG/THID-19/5580
ISSN
1651-2197
language
Swedish
id
8985940
date added to LUP
2019-06-20 16:21:43
date last changed
2019-08-05 13:56:09
@misc{8985940,
  abstract     = {{Bitumen and its properties have long been considered the most important factor in the function of asphalt. The attributes that are present in bitumen are relatively easy to control. Since the attributes are relatively easy to control and a lot of knowledge already exists of bitumen its attributes are considered to be the decisive factor in how an asphalt coating will act when it is being used. The measurement methods, softening point and penetration numbers, which are used to quantify the attributes of bitumen are relatively easy to use. When using the measurement methods, a measurement number is given on the behavior of the bitumen. The measurement figures given in the measurement methods have, for several years of follow-up and examination, been able to be linked to the properties of the asphalt. The methods used are accepted in the industry as they have proved to be easy to use and clearly linked to reality. Softening point and penetration number, however, fail when the bitumen is mixed with additives and said methods cannot describe what happens to the bitumen after mixing since there is no historical knowledge.

For some years now, it has emerged that it is the asphalt mastics, that comes from mixing bitumen and filler, which controls the asphalt's resilience, stability and, in the long run, durability and not the bitumen. A standard for evaluations and tests, however, has never been made on asphalt plaster in any extensive work. The lack of interest in asphalt plaster is probably due to the difficulties that exist in measuring the properties of the material since the material is not suitable for the traditional measuring methods that exist. Another reason may be that the properties of the filler may vary depending on which asphalt plant the filler comes from and sometimes the properties of the filler may vary over time. Reality behaves as such, but it also complicates the design of regulations for manufacturing and quality controls.

In this thesis work, the viscosity of asphalt mastics is examined with filler from various asphalt plants in a rotary viscometer of type Brookfield, RVB in a laboratory at LTH, Lund. Different levels of filler in the asphalt mastics are also investigated.

RVB has been used and developed in a number of degree projects at LTH and has shown good precision for pure bitumen and bitumen with additives such as wax and polymers. Despite possible problems with homogenization and segregation, the method seems to work equally well for filler-mixed asphalt mastics.

The results from the RVB were graphically presented in Heukelom BTCD diagram in the form of series of measurement points linked to viscosity lines. The BTDC diagram shows how the viscosity and temperature relate to each other and how bitumen reacts to different filler and different filler contents at the same temperatures.

All measurements in a series consist of single measurements. No reminders have been made or deletions of the extremes. Using the WLF connection, which is the master curve of the viscosity measurements, the viscosity can be calculated at any temperature and vice versa, the temperature can be calculated at any viscosity. The latter is used to calculate Soft Point according to RVB. After reviewing the results, a viscosity was chosen which can be considered acceptable during the mixing process. The temperature at this viscosity, in addition to the soft point, is the comparative parameter for the various asphalt uses and the respective types of fillers.

From the results it can be seen that filler from the studied, commonly occurring rock materials does not appear to differ in stiffening of the asphalt mastics. However, the amount of filler has great influence and the question is how the Fille/Bitumin value really looks like on the asphalt works. It is easily controlled in the compositional analysis of the asphalt mixes and in the asphalt plant dosing recipes.

Replacement of existing natural filler is not very popular for economic and practical reasons (one may already have a surplus) but lime rock filler has a beneficial effect on the flexibility of asphalt use. It is no news, but here are measurement numbers to illustrate the effect.

Cement has a stronger stiffening effect on asphalt mastics compared to other types of fillers. Since it is not used as filler in Sweden but only as an adhesive additive in small quantities, it is of no practical significance.

A higher Rigden porosity is considered to cause increased stiffening of asphalt use. The case of cement, which has relatively low Rigden porosity, shows that there must be other factors of greater importance. Such factors may be the grain size distribution, which could not be determined here, or chemical effects.}},
  author       = {{Rosqvist, Max}},
  issn         = {{1651-2197}},
  language     = {{swe}},
  note         = {{Student Paper}},
  title        = {{Undersökning av viskositet hos asfaltbruk - Mätningar med rotationsviskosimeter på bruk med olika fillersorter och mängder}},
  year         = {{2019}},
}