Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Automatiserad impedansanpassning av ett serieresonant induktionsvärmningssystem

Anderberg, Albert LU (2019) In CODEN:LUTEDX/TEIE EIEM01 20191
Industrial Electrical Engineering and Automation
Abstract (Swedish)
Inom industrin används många typer av värmekällor. Det kan vara öppna lågor, IR strålning, resistiv uppvärmning eller induktionsvärmning. Induktionsvärmningen är en värmingstyp med hög energidensitet, låg investeringskostnad, snabb uppstartstid och hög flexibilitet. Ett serieresonant induktionsvärmningssystem består i sin enklaste form av en växelspänningskälla, en spole, en kondensator och objektet som ska värmas. För att maximal effekt ska kunna levereras till lasten ansluts en transformator mellan spänningskällan och lasten. Olika induktorer kräver olika kapacitanser och transformatorer för att fungera optimalt. I dagsläget monteras dessa komponenter manuellt för varje induktor och applikation men en automatiserad lösning hade varit att... (More)
Inom industrin används många typer av värmekällor. Det kan vara öppna lågor, IR strålning, resistiv uppvärmning eller induktionsvärmning. Induktionsvärmningen är en värmingstyp med hög energidensitet, låg investeringskostnad, snabb uppstartstid och hög flexibilitet. Ett serieresonant induktionsvärmningssystem består i sin enklaste form av en växelspänningskälla, en spole, en kondensator och objektet som ska värmas. För att maximal effekt ska kunna levereras till lasten ansluts en transformator mellan spänningskällan och lasten. Olika induktorer kräver olika kapacitanser och transformatorer för att fungera optimalt. I dagsläget monteras dessa komponenter manuellt för varje induktor och applikation men en automatiserad lösning hade varit att föredra för att ytterligare kunna effektivisera tillverkningsprocesser genom att alltid uppnå maximal värmningseffekt.

Detta arbetets huvudsyfte är att konstruera en prototyp av en automatisk impedansanpassare som kan användas istället för att manuellt byta komponenter. Prototypen ska bestå av ett fåtal transformatorer och kondensatorbanker vars konfiguration kan ställas med hjälp av reläer. Impedansanpassaren ska ta emot kommandon från en frekvensomriktare eller en extern dator och välja konfiguration utifrån dessa.

Arbetet har utmynnat i en framtagen konstruktion och en förenklad prototyp. Den framtagna konstruktionen består av tre kanaler och den byggda prototypen av en kanal. Den byggda prototypen har utvärderats utifrån en funktionsbeskrivning som togs fram i början av arbetet. I denna beskrivs de önskade funktionerna och krav som ställs på impedansanpassaren. En sak som kom fram under utvärderingen är att det lätt uppstår för höga spänningar i kretsen. För att undvika detta bör frekvensomriktaren begränsa den möjliga strömmen så att för höga spänningar och i värsta fall överslag undviks. Även EM-skärmning av reläerna undersöktes för att se hur det påverkar uppvärmningen av dem. För de reläer som använts påverkar inte skärmningen tillräckligt mycket för att definitivt konstatera att det hjälper. Skärmning bör undersökas vidare ifall andra reläer, kanske till och med egendesignade, används. (Less)
Abstract
Many different types of heat sources are used in the industry. Some of these are open flames, IR-radiation, resistive heating and induction heating. Induction heating is a heating technology that have a high energy density, fast start up times and high flexibility. A simple series resonant induction heating system consists of a voltage source, a capacitor, an inductor and the object to be heated. To be able to deliver more power to the load, a transformer can be connected to the output of the voltage source. Different inductors, transformers and capacitors are required for different applications. Today these are connected and disconnected manually but an automated solution is required to further automate the induction heating process.

... (More)
Many different types of heat sources are used in the industry. Some of these are open flames, IR-radiation, resistive heating and induction heating. Induction heating is a heating technology that have a high energy density, fast start up times and high flexibility. A simple series resonant induction heating system consists of a voltage source, a capacitor, an inductor and the object to be heated. To be able to deliver more power to the load, a transformer can be connected to the output of the voltage source. Different inductors, transformers and capacitors are required for different applications. Today these are connected and disconnected manually but an automated solution is required to further automate the induction heating process.

The main purpose of this project is to construct an automated impedance matcher that can be used instead of manually connecting and changing components. The prototype is supposed to consists of a few transformers and capacitor banks. Switching between different configurations are done using relays. Configurations and other instructions are to be received from the frequency inverter or a computer over a serial interface.

The result of this project is a designed solution and a built simplified prototype. The developed solution consists of three channels while the built prototype only has one such channel. The impedance matcher is then evaluated based on the function description that was developed in the beginning of the project. The function description outlines the wanted and required functions and features of the impedance matcher. The discovery of the risk of significantly too high voltages within the capacitor bank was a result of this evaluation. Worst case these high voltages can lead to arcing between components or inside the relays. To mitigate or even completely avoid this problem the frequency inverter should limit the available current for certain settings. Another thing that was evaluated was the effectiveness of EM-shielding within the used relays to reduce internal losses. The shielding seemed to have an effect but not significant enough to conclusively say that shielding is worth the extra effort. If another type of relay is used, maybe even custom designed, further evaluation is required to determine if shielding is a viable option to reduce heating of the relays. (Less)
Please use this url to cite or link to this publication:
author
Anderberg, Albert LU
supervisor
organization
course
EIEM01 20191
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
induction, heating, impedance, matching, series resonance, automation
publication/series
CODEN:LUTEDX/TEIE
report number
5425
language
Swedish
id
8986621
date added to LUP
2021-04-27 14:29:42
date last changed
2021-04-27 14:29:42
@misc{8986621,
  abstract     = {{Many different types of heat sources are used in the industry. Some of these are open flames, IR-radiation, resistive heating and induction heating. Induction heating is a heating technology that have a high energy density, fast start up times and high flexibility. A simple series resonant induction heating system consists of a voltage source, a capacitor, an inductor and the object to be heated. To be able to deliver more power to the load, a transformer can be connected to the output of the voltage source. Different inductors, transformers and capacitors are required for different applications. Today these are connected and disconnected manually but an automated solution is required to further automate the induction heating process.

The main purpose of this project is to construct an automated impedance matcher that can be used instead of manually connecting and changing components. The prototype is supposed to consists of a few transformers and capacitor banks. Switching between different configurations are done using relays. Configurations and other instructions are to be received from the frequency inverter or a computer over a serial interface.

The result of this project is a designed solution and a built simplified prototype. The developed solution consists of three channels while the built prototype only has one such channel. The impedance matcher is then evaluated based on the function description that was developed in the beginning of the project. The function description outlines the wanted and required functions and features of the impedance matcher. The discovery of the risk of significantly too high voltages within the capacitor bank was a result of this evaluation. Worst case these high voltages can lead to arcing between components or inside the relays. To mitigate or even completely avoid this problem the frequency inverter should limit the available current for certain settings. Another thing that was evaluated was the effectiveness of EM-shielding within the used relays to reduce internal losses. The shielding seemed to have an effect but not significant enough to conclusively say that shielding is worth the extra effort. If another type of relay is used, maybe even custom designed, further evaluation is required to determine if shielding is a viable option to reduce heating of the relays.}},
  author       = {{Anderberg, Albert}},
  language     = {{swe}},
  note         = {{Student Paper}},
  series       = {{CODEN:LUTEDX/TEIE}},
  title        = {{Automatiserad impedansanpassning av ett serieresonant induktionsvärmningssystem}},
  year         = {{2019}},
}