Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Iodine Quantification Using Dual Energy Computed Tomography and applications in Brain Imaging

Fransson, Veronica (2019) MSFT01 20191
Medical Physics Programme
Abstract
Purpose/Background
Dual Energy Computed Tomography (DECT) have been clinically available for over ten years.
Two such systems are currently used at Skane University Hospital (SUS) in Lund. By utilizing
materials different attenuating properties at different energies, material decomposition
and iodine quantification is possible. The aim of this master thesis was to compare the two
DECT systems and determine how the accuracy of iodine quantification is dependent on iodine
concentration, size of measured structure and radiation dose, in terms of CTDIvol. Furthermore
the aim was to develop a method for quantitative evaluation of Multiphase CT Angiography
(MP-CTA) using iodine quantification. When there is suspicion of stroke, MP-CTA... (More)
Purpose/Background
Dual Energy Computed Tomography (DECT) have been clinically available for over ten years.
Two such systems are currently used at Skane University Hospital (SUS) in Lund. By utilizing
materials different attenuating properties at different energies, material decomposition
and iodine quantification is possible. The aim of this master thesis was to compare the two
DECT systems and determine how the accuracy of iodine quantification is dependent on iodine
concentration, size of measured structure and radiation dose, in terms of CTDIvol. Furthermore
the aim was to develop a method for quantitative evaluation of Multiphase CT Angiography
(MP-CTA) using iodine quantification. When there is suspicion of stroke, MP-CTA and CT
Perfusion (CTP) are performed. The goal was to find a correlation between MP-CTA and CTP
and in extension see if MP-CTA can potentially replace CTP.

Materials and methods
A phantom study was performed on two DECT systems; IQon Spectral CT (Philips Healthcare)
and Somatom Definition Flash (Siemens Healthcare) using a cylindrical Jaszczak phantom
with syringes of different inner diameters (17, 7 and 3 mm) inserted. Syringes were filled with
dilutions of contrast material solution (Iomeron® 400 mg I/ml, Bracco Diagnostic Inc.) with
iodine concentrations in the interval 0.05 - 14 mg/ml. Scans with radiation doses corresponding
to CTDIvol of 2.7, 9.0 and 18.1 mGy were performed to test for potential dose dependence. The
deviation in measured iodine concentrations from the true value was studied considering the
investigated parameters. For the quantitative evaluation of MP-CTA, on the IQon Spectral
CT, a total of seven patients were studied who had CTP and MP-CTA performed. Iodine
density as well as HU (corresponding to 70 kVp and mono-energetic 40 keV) was measured as
a function of time in vasculatory regions of the brain. The regions were compared between left
and right hemisphere and the results were compared to CTP findings.

Results
Measurements of iodine concentration showed that the accuracy of the iodine quantification
decreased for lower concentrations. Both DECT systems had deviations smaller than 50% for
concentrations of 0.88 mg/ml and higher. The root mean square deviation (RMSD) showed less
accuracy for smaller syringe diameters; for 17, 7 and 3 mm the RMSD was 0.14, 0.43 and 1.00
for Flash and 0.15, 0.23 and 0.51 for IQon. The IQon was generally more accurate than the
Flash. The Flash also had larger variations between successive measurements. RMSD was also
higher for CTDIvol of 2.7 mGy as compared to the higher dose levels. Quantitative analysis on
MP-CTA showed delayed arrival and excretion of contrast material in the same regions which
presented with perfusion deficits for CTP. Difference between healthy tissue and tissue with
perfusion deficits was larger for iodine density than for HU.

Conclusion
The results of the phantom study was in line with previously performed studies. Iodine quantification
is above all highly dependent on the measured concentration. A trend for larger errors
with smaller syringe diameter and lower dose level was also found. IQon had a higher accuracy
than the Flash, especially for lower iodine concentrations and for smaller syringes. The patient
study results showed good correlation between MP-CTA analysis and CTP findings. Results
indicate that the MP-CTA can be used to detect perfusion deficits using iodine quantification.
The method needs to be further developed and tested in order to see if it can replace CTP. (Less)
Popular Abstract (Swedish)
Att man kan använda röntgenstrålning för att ta bilder på kroppens inre har varit känt sedan
sent 1800-tal och idag finns det en mängd olika röntgenapparater. En sådan är datortomografen,
computed tomography (CT) på engelska. Med datortomografi är det möjligt att avbilda patienten
i tre dimensioner, istället för vid slätröntgen där man endast får ut en tvådimensionell bild.
Detta möjliggör en bättre visualisering och diagnostisering av sjukdomar och skador. Detta,
plus dess snabbhet och tillgänglighet, har gjort att antalet datortomografiska undersökningar i
Sverige ökat flera gånger om sedan mitten av 90-talet.

Beroende på vilken röntgenenergi som används kan olika vävnader sättas i fokus i bilden.
Hög energi innebär att... (More)
Att man kan använda röntgenstrålning för att ta bilder på kroppens inre har varit känt sedan
sent 1800-tal och idag finns det en mängd olika röntgenapparater. En sådan är datortomografen,
computed tomography (CT) på engelska. Med datortomografi är det möjligt att avbilda patienten
i tre dimensioner, istället för vid slätröntgen där man endast får ut en tvådimensionell bild.
Detta möjliggör en bättre visualisering och diagnostisering av sjukdomar och skador. Detta,
plus dess snabbhet och tillgänglighet, har gjort att antalet datortomografiska undersökningar i
Sverige ökat flera gånger om sedan mitten av 90-talet.

Beroende på vilken röntgenenergi som används kan olika vävnader sättas i fokus i bilden.
Hög energi innebär att mjukvävnad blir "osynlig" och bara material med hög densitet, så som
ben eller injicerade kontrastmedel, syns. Låg energi ger bättre bilder av mjukvävnad men på
bekostnad av en högre stråldos till patienten, ifall samma bildkvalitet ska erhållas. När tekniken
och forskningen går framåt så vill man hela tiden optimera undersökningar, för att bilderna
ska ge ett högre diagnostiskt värde och lägre stråldoser. En relativt ny funktion hos datortomografer
är "dual energy". Detta innebär att undersökningar görs med två olika energinivåer
samtidigt. Med dual energy är det möjligt att separera mellan material som har likartade
densiteter men olika sammansättning, och det går även att identifiera specifika material. Vid
många undersökningar görs en bildtagning med och utan jodbaserade kontrastmedel. Eftersom
jod dämpar röntgenstrålarna olika mycket vid de två energierna så kan man beräkna vad i
bilden som är jod. Därefter kan man välja att ta bort jodbidraget vilket skapar en så kallad
"virtuell icke-kontrastbild". Ifall metoden är tillförlitlig elimineras behovet av en bildtagning
utan kontrastmedel. Detta skulle innebära en direkt reduktion av stråldos till patienten.

I det här arbetet så har just tillförlitligheten i kvantifieringen av jod utretts, och jämförts
för två olika datortomografiska kamerasystem med olika metoder för dual energy. Dessa är
Somatom Definition Flash (Siemens Healthcare) och IQon Spectral CT (Philips Healthcare).
Ett vattenfyllt, cylinderformat fantom användes för att efterlikna en patient. I fantomet placerades
olika stora sprutor med olika koncentrationer jodlösning. Därefter togs bilder på fantomet
med datortomograferna och ur bilderna mättes jodkoncentrationen. För arbetet studerades
jodkoncentrationer likt de som typiskt hittas i blodkärl och i hjärnans mjukvävnad efter en
kontrastmedelsinjektion. Resultatet påvisade, för bägge kamerasystemen, att jodkvantifieringen
förlorade tillförlitlighet för när lägre jodkoncentration och mindre stora objekt studerades.
Detta är viktigt att vara medveten om vid användning av funktioner som utnyttjar jodkvantifiering.

Till sist undersöktes ett potentiellt nytt användningsområde för jodkvantifiering. Frågeställningen
var om jodkvantifiering kan användas för att identifiera områden med nedsatt blodförsörjning
i hjärnan vid stroke. För en typisk patient dör 2 miljoner hjärnceller varje minut vid
stroke, en snabb diagnos och behandling är därför absolut livsviktigt. Vid misstanke om stroke
genomförs i dagsläget både en datortomografisk perfusionsundersökning och en angiografi med
multifas. I detta arbete undersöktes ifall samma information gick att få ut från angiografin som
från perfusionsundersökningen. Trots att bara ett fåtal patienter studerades så gav försöket
lovande resultat. Om det visar sig att samma information är tillgänglig så skulle perfusionsundersökningen
potentiellt kunna tas bort från rutinen, vilket skulle innebära en nästan halverad
stråldos (från cirka 3 till 1,5 mSv) och, kanske viktigast, en snabbare bildtagning. (Less)
Please use this url to cite or link to this publication:
author
Fransson, Veronica
supervisor
organization
course
MSFT01 20191
year
type
H2 - Master's Degree (Two Years)
subject
language
English
id
8995820
date added to LUP
2019-09-27 09:05:37
date last changed
2019-09-27 09:05:37
@misc{8995820,
  abstract     = {{Purpose/Background
Dual Energy Computed Tomography (DECT) have been clinically available for over ten years.
Two such systems are currently used at Skane University Hospital (SUS) in Lund. By utilizing
materials different attenuating properties at different energies, material decomposition
and iodine quantification is possible. The aim of this master thesis was to compare the two
DECT systems and determine how the accuracy of iodine quantification is dependent on iodine
concentration, size of measured structure and radiation dose, in terms of CTDIvol. Furthermore
the aim was to develop a method for quantitative evaluation of Multiphase CT Angiography
(MP-CTA) using iodine quantification. When there is suspicion of stroke, MP-CTA and CT
Perfusion (CTP) are performed. The goal was to find a correlation between MP-CTA and CTP
and in extension see if MP-CTA can potentially replace CTP.

Materials and methods
A phantom study was performed on two DECT systems; IQon Spectral CT (Philips Healthcare)
and Somatom Definition Flash (Siemens Healthcare) using a cylindrical Jaszczak phantom
with syringes of different inner diameters (17, 7 and 3 mm) inserted. Syringes were filled with
dilutions of contrast material solution (Iomeron® 400 mg I/ml, Bracco Diagnostic Inc.) with
iodine concentrations in the interval 0.05 - 14 mg/ml. Scans with radiation doses corresponding
to CTDIvol of 2.7, 9.0 and 18.1 mGy were performed to test for potential dose dependence. The
deviation in measured iodine concentrations from the true value was studied considering the
investigated parameters. For the quantitative evaluation of MP-CTA, on the IQon Spectral
CT, a total of seven patients were studied who had CTP and MP-CTA performed. Iodine
density as well as HU (corresponding to 70 kVp and mono-energetic 40 keV) was measured as
a function of time in vasculatory regions of the brain. The regions were compared between left
and right hemisphere and the results were compared to CTP findings.

Results
Measurements of iodine concentration showed that the accuracy of the iodine quantification
decreased for lower concentrations. Both DECT systems had deviations smaller than 50% for
concentrations of 0.88 mg/ml and higher. The root mean square deviation (RMSD) showed less
accuracy for smaller syringe diameters; for 17, 7 and 3 mm the RMSD was 0.14, 0.43 and 1.00
for Flash and 0.15, 0.23 and 0.51 for IQon. The IQon was generally more accurate than the
Flash. The Flash also had larger variations between successive measurements. RMSD was also
higher for CTDIvol of 2.7 mGy as compared to the higher dose levels. Quantitative analysis on
MP-CTA showed delayed arrival and excretion of contrast material in the same regions which
presented with perfusion deficits for CTP. Difference between healthy tissue and tissue with
perfusion deficits was larger for iodine density than for HU.

Conclusion
The results of the phantom study was in line with previously performed studies. Iodine quantification
is above all highly dependent on the measured concentration. A trend for larger errors
with smaller syringe diameter and lower dose level was also found. IQon had a higher accuracy
than the Flash, especially for lower iodine concentrations and for smaller syringes. The patient
study results showed good correlation between MP-CTA analysis and CTP findings. Results
indicate that the MP-CTA can be used to detect perfusion deficits using iodine quantification.
The method needs to be further developed and tested in order to see if it can replace CTP.}},
  author       = {{Fransson, Veronica}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Iodine Quantification Using Dual Energy Computed Tomography and applications in Brain Imaging}},
  year         = {{2019}},
}