Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Greenhouse Gas Emissions Reduction in the Heavy-Duty Transport Sector - A Case Study of Renewable Energy Carriers in Sweden

André, Karolina LU and Degerstedt, William LU (2021) MVKM01 20211
Department of Energy Sciences
Abstract (Swedish)
Den svenska transportsektorn står för ungefär en tredjedel av landets totala utsläpp av växthusgaser och släppte 2019 ut 16,4 Mt CO2-ekvivalenter. Av dessa står den tunga vägtrafiken för cirka 20 % och är efter passagerarfordonen den största källan till utsläpp av växthusgaser inom sektorn. I och med FN:s klimatpanels återkommande rapporter om klimatförändringen och den Europeiska Unionens nya klimatagenda har det blivit allt större fokus på att vi måste minska våra utsläpp. Dessutom har Sverige satt egna klimatmål om nettonollutsläpp till år 2045 och ett delmål på 70 % lägre utsläpp från transportsektorn till 2030 jämfört med år 2010s nivåer. Med detta som bakgrund ville denna studie undersöka hur byte till förnybara bränslen kan ge... (More)
Den svenska transportsektorn står för ungefär en tredjedel av landets totala utsläpp av växthusgaser och släppte 2019 ut 16,4 Mt CO2-ekvivalenter. Av dessa står den tunga vägtrafiken för cirka 20 % och är efter passagerarfordonen den största källan till utsläpp av växthusgaser inom sektorn. I och med FN:s klimatpanels återkommande rapporter om klimatförändringen och den Europeiska Unionens nya klimatagenda har det blivit allt större fokus på att vi måste minska våra utsläpp. Dessutom har Sverige satt egna klimatmål om nettonollutsläpp till år 2045 och ett delmål på 70 % lägre utsläpp från transportsektorn till 2030 jämfört med år 2010s nivåer. Med detta som bakgrund ville denna studie undersöka hur byte till förnybara bränslen kan ge kostnadseffektiva utsläppsminskningar inom den tunga vägtrafiken i Sverige.

Denna studie undersökte tio olika drivmedel (varav nio är förnybara och diesel inkluderas som referens) mot varandra genom en livscykelanalys, utifrån ett vagga-till-användningsperspektiv och en funktionell enhet på kg CO2-eq per fordonskilometer. Analysen genomfördes för två olika lastbilsmodeller och användningsområden, en lastbil som antogs ha ett körmönster anpassat för lokal distribution och en dragbil med ett körmönster för fjärrtransport. Ytterligare utfördes även en kostnadskalkyl, som total kostnad av ägarskap (TCO), för inköp och framdrift av de två fordonstyperna med enskilda beräkningar för de olika drivmedlen. I denna analys undersöktes även kostnadseffekterna om flytande biodrivmedel förlorar sin skattesubvention, samt ett högt och ett lågt fall för elvägs- (ERSV) och batterielbilen (BEV). Livscykel- och kostnadsanalysen kombinerades sedan för att kunna jämföra de olika förnybara drivmedlen utifrån kSEK per reducerat ton CO2-eq. Detta gjordes genom att titta på utsläppsbesparingar och kostnadsförändringar gentemot det likvärdiga dieselfordonet som också undersöktes i studien. Slutligen utfördes även en intervjustudie i två steg med aktörer som äger eller beställer tunga vägtransporter inom Sverige. Sammanlagt intervjuades 13 organisationer med geografiskt skilda verksamhetsområden grupperade utifrån kategorierna offentlig sektor, privat sektor, små-medelstora åkerier och paketdistributörer.


Resultaten från analyserna visar att ERSV har de lägsta livscykelutsläppen för båda fordonstyperna. De näst lägsta livscykelutsläppen har BEV, och HVO-fordonet alternativt metanol-fordonet har de tredje lägsta. För distributionslastbilen har low case BEV lägst totala ägarekostnader, följt av low case ERSV och HVO-fordonet (inte inkluderande dieselfordonet). För fjärrtransportbilen har low case ERSV de lägsta totala ägarekostnaderna, följt av low case BEV och HVO-fordonet. Low case ERSV har högst emissionsreduktion per investerad svensk krona, och har både lägre kostnader och utsläpp jämfört med dieselfordonet. Intervjustudien visar att många tror på elektriska drivlinor som en långtidslösning, men att andra förnybara alternativ är nödvändiga för att ersätta fossil diesel. Flera driftproblem togs även upp, vilka måste övervinnas med hjälp av statliga medel och teknisk utveckling, för att säkra en smidig övergång till fossilfria tunga lastbilar.

Med utgångspunkt från denna studies resultat rekommenderas vidare undersökningar med större fokus på användarfasens körmönster och arbetsområde. Även djupare undersökningar på de lovande alternativen som fortfarande är i konceptsfasen rekommenderas, samt vidare studier gällande problematiken med tillgång och infrastruktur rörande förnybara drivmedel. Slutligen rekommenderas även analyser med ett större geografiskt fokus, exempelvis på EU-nivå, eller framtida analyser då de olika drivmedlens marknadsandel ändrats. (Less)
Abstract
The Swedish transport sector accounts for roughly a third of the country’s total emissions of greenhouse gases, emitting 16.4 Mt CO2-equivalents in 2019. Of these emissions, the heavy road traffic accounts for 20 % and is the sectors largest source of greenhouse gas emissions after the passenger vehicle fleet. With the Intergovernmental Panel on Climate Change's recurring reports on the climate change and the European Union's new climate agenda, there is a growing focus on the need to reduce our emissions. In addition, Sweden has set its own climate targets for net zero emissions by 2045 and an intermediate target of 70 % lower emissions from the transport sector by 2030, compared to the emission levels from 2010. With this background,... (More)
The Swedish transport sector accounts for roughly a third of the country’s total emissions of greenhouse gases, emitting 16.4 Mt CO2-equivalents in 2019. Of these emissions, the heavy road traffic accounts for 20 % and is the sectors largest source of greenhouse gas emissions after the passenger vehicle fleet. With the Intergovernmental Panel on Climate Change's recurring reports on the climate change and the European Union's new climate agenda, there is a growing focus on the need to reduce our emissions. In addition, Sweden has set its own climate targets for net zero emissions by 2045 and an intermediate target of 70 % lower emissions from the transport sector by 2030, compared to the emission levels from 2010. With this background, this study investigates how switching to renewable energy carriers can provide cost-effective emissions reductions for heavy road traffic in Sweden.

This study examined ten different fuels (nine renewable fuels and trade diesel as a reference) against each other through a life-cycle assessment, from a cradle-to-use perspective and with a functional unit of kg CO2-eq per vehicle kilometre. The analysis was carried out for two different truck models and areas of use: a truck assumed to have a driving pattern adapted for local distribution and a tractor with a driving pattern for long-distance transport. In addition, a cost calculation was also performed, as a total cost of ownership (TCO), for the purchase and propulsion of the two vehicle types with individual calculations for each energy carrier. This analysis also examined the cost effects of liquid biofuels losing their tax subsidy, as well as a high and a low-cost case for the electric road system vehicle (ERSV) and the battery electric vehicle (BEV). The life-cycle and cost analysis were then combined to enable a comparison of the different renewable energy carriers based on kSEK per reduced tonne of CO2-eq emissions. This was performed by looking at emissions savings and cost changes compared to the equivalent diesel vehicle included in the study. Finally, a two-step interview study was conducted with actors who operate heavy road transport within Sweden. A total of 13 organisations with geographically different areas of activity were interviewed, selected and grouped on the basis of the categories public sector, private sector, small-medium sized haulers and package distributors.

The results from the analyses show that the ERSV has the lowest life-cycle emissions for both the studied vehicle types. The second lowest life-cycle emissions belong to the BEV, and the third lowest to the HVO vehicle or the vehicle operating on methanol, depending on truck type. For the distribution truck, the low case BEV has the lowest TCO, followed by the low case ERSV and the HVO vehicle (not including the diesel vehicle). For the long-haul truck, the lowest TCO belongs to the low case ERSV, followed by the low case BEV and the HVO vehicle. The low case ERSV has the highest emissions reduction per invested SEK, and has both lower costs and emissions compared to the diesel vehicle. The interview study results show that many believe in electric powertrains as long-term solutions, though other renewable options will also be necessary for replacing fossil diesel. At the same time, various operating limitations were brought up, which need to be overcome through government instruments and technological development, in order to ensure a smooth shift towards fossil free heavy-duty trucks.

Based on the results from this thesis, further studies are recommended with a greater focus on the user phase's driving pattern and work application. In addition, the promising alternative energy carriers that are still in the concept phase need further analysis, as do the issues regarding availability and infrastructure for renewable fuels. Finally, a similar project to this one could produce very different results if done on an EU level or in the future when the market shares of many energy carriers have presumably changed. (Less)
Please use this url to cite or link to this publication:
author
André, Karolina LU and Degerstedt, William LU
supervisor
organization
course
MVKM01 20211
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Battery electric vehicle, Biofuels, Greenhouse gas, Heavy-duty vehicles, LCA, Renewable energy carriers, Renewable fuels, TCO, Transport sector, Well-to-wheel
report number
LUTMDN/TMHP-21/5476-SE
ISSN
0282-1990
language
English
id
9057358
date added to LUP
2021-06-23 08:23:21
date last changed
2021-06-23 08:23:21
@misc{9057358,
  abstract     = {{The Swedish transport sector accounts for roughly a third of the country’s total emissions of greenhouse gases, emitting 16.4 Mt CO2-equivalents in 2019. Of these emissions, the heavy road traffic accounts for 20 % and is the sectors largest source of greenhouse gas emissions after the passenger vehicle fleet. With the Intergovernmental Panel on Climate Change's recurring reports on the climate change and the European Union's new climate agenda, there is a growing focus on the need to reduce our emissions. In addition, Sweden has set its own climate targets for net zero emissions by 2045 and an intermediate target of 70 % lower emissions from the transport sector by 2030, compared to the emission levels from 2010. With this background, this study investigates how switching to renewable energy carriers can provide cost-effective emissions reductions for heavy road traffic in Sweden. 

This study examined ten different fuels (nine renewable fuels and trade diesel as a reference) against each other through a life-cycle assessment, from a cradle-to-use perspective and with a functional unit of kg CO2-eq per vehicle kilometre. The analysis was carried out for two different truck models and areas of use: a truck assumed to have a driving pattern adapted for local distribution and a tractor with a driving pattern for long-distance transport. In addition, a cost calculation was also performed, as a total cost of ownership (TCO), for the purchase and propulsion of the two vehicle types with individual calculations for each energy carrier. This analysis also examined the cost effects of liquid biofuels losing their tax subsidy, as well as a high and a low-cost case for the electric road system vehicle (ERSV) and the battery electric vehicle (BEV). The life-cycle and cost analysis were then combined to enable a comparison of the different renewable energy carriers based on kSEK per reduced tonne of CO2-eq emissions. This was performed by looking at emissions savings and cost changes compared to the equivalent diesel vehicle included in the study. Finally, a two-step interview study was conducted with actors who operate heavy road transport within Sweden. A total of 13 organisations with geographically different areas of activity were interviewed, selected and grouped on the basis of the categories public sector, private sector, small-medium sized haulers and package distributors. 

The results from the analyses show that the ERSV has the lowest life-cycle emissions for both the studied vehicle types. The second lowest life-cycle emissions belong to the BEV, and the third lowest to the HVO vehicle or the vehicle operating on methanol, depending on truck type. For the distribution truck, the low case BEV has the lowest TCO, followed by the low case ERSV and the HVO vehicle (not including the diesel vehicle). For the long-haul truck, the lowest TCO belongs to the low case ERSV, followed by the low case BEV and the HVO vehicle. The low case ERSV has the highest emissions reduction per invested SEK, and has both lower costs and emissions compared to the diesel vehicle. The interview study results show that many believe in electric powertrains as long-term solutions, though other renewable options will also be necessary for replacing fossil diesel. At the same time, various operating limitations were brought up, which need to be overcome through government instruments and technological development, in order to ensure a smooth shift towards fossil free heavy-duty trucks.

Based on the results from this thesis, further studies are recommended with a greater focus on the user phase's driving pattern and work application. In addition, the promising alternative energy carriers that are still in the concept phase need further analysis, as do the issues regarding availability and infrastructure for renewable fuels. Finally, a similar project to this one could produce very different results if done on an EU level or in the future when the market shares of many energy carriers have presumably changed.}},
  author       = {{André, Karolina and Degerstedt, William}},
  issn         = {{0282-1990}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Greenhouse Gas Emissions Reduction in the Heavy-Duty Transport Sector - A Case Study of Renewable Energy Carriers in Sweden}},
  year         = {{2021}},
}