Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Towards Ca2+ Responsive Reticular Materials. An Evaluation of Suitable Conditions for Self-Assembly of the Protein S100G

Carlsson, Andreas LU (2021) KFKM05 20211
Biophysical Chemistry
Abstract (Swedish)
Att bygga material av proteiner är en konst som våra kroppar är specialister på. Men när vi medvetet försöker designa proteinmaterial, så blir det tydligt hur komplexa och svårstyrda biofysikens lagar är. Det här examensarbetet har som mål att lägga grunden för ett proteinmaterial som kan skapas eller dissociera som respons på förändrad Ca2+-koncentration. Om ett sådant material kan framställas med ordnad
struktur, så är det möjligt att det kan absorbera specifika molekyler, såsom ett läkemedel, och sedan släppa lös detta på en given signal. Byggstenarna som används i det här projektet är ett Ca2+-transporterande protein i våra kroppar, kallat S100G. För att förstå hur detta protein lämpligt kan forma strukturer så ägnar projektet sig... (More)
Att bygga material av proteiner är en konst som våra kroppar är specialister på. Men när vi medvetet försöker designa proteinmaterial, så blir det tydligt hur komplexa och svårstyrda biofysikens lagar är. Det här examensarbetet har som mål att lägga grunden för ett proteinmaterial som kan skapas eller dissociera som respons på förändrad Ca2+-koncentration. Om ett sådant material kan framställas med ordnad
struktur, så är det möjligt att det kan absorbera specifika molekyler, såsom ett läkemedel, och sedan släppa lös detta på en given signal. Byggstenarna som används i det här projektet är ett Ca2+-transporterande protein i våra kroppar, kallat S100G. För att förstå hur detta protein lämpligt kan forma strukturer så ägnar projektet sig till största del åt att undersöka vid vilka förhållanden som aggregering sker, och för vilka mutationer av S100G som detta händer mest. Experiment med native gel elektrofores och storleksseparationskromatografi visar att S100G, med en extra länk med nio prolineresiduer mellan sina subdomäner (EF-händer), bildade tre oligomera strukturer, förutom monomerer. Aggregaten var stabila och endast svagt beroende av förhållanden såsom pH, jonisk styrka och temperatur (i icke-extrema intervaller). Däremot var det nödvändigt med tillräckligt hög Ca2+-koncentration för att mätta proteinerna. I slutet av projektet användes en proteinvariant från en annan del av uppreningsprocessen, och dessa resultat verkar ännu mer lovande då de indikerar att dessa proteiner bildade aggregat med cirka 15 gånger så stor radie som monomererna. (Less)
Abstract
To build materials of proteins is an art that nature is a specialists in. But when we actively try to design protein materials, it becomes clear how complex and hard to control the biophysical world is. This master thesis aims to lay the foundation for a protein material that forms and dissociates as a response to changed Ca2+ concentration. If such a material is to be produced with an ordered structure, it might absorb specific molecules, such as a medical substance, and release it under a certain condition. The building block used in this project is a Ca2+ transporting protein in our bodies, called S100G. To understand how this protein suitably forms aggregates, the project mainly deals with evaluation of aggregation conditions, to find... (More)
To build materials of proteins is an art that nature is a specialists in. But when we actively try to design protein materials, it becomes clear how complex and hard to control the biophysical world is. This master thesis aims to lay the foundation for a protein material that forms and dissociates as a response to changed Ca2+ concentration. If such a material is to be produced with an ordered structure, it might absorb specific molecules, such as a medical substance, and release it under a certain condition. The building block used in this project is a Ca2+ transporting protein in our bodies, called S100G. To understand how this protein suitably forms aggregates, the project mainly deals with evaluation of aggregation conditions, to find out when this is happening and for which mutations of S100G it occurs the most. To accomplish this goal, native gel electrophoresis and size exclusion chromatography have been used. The results show that S100G, with an extra inserted linker of nine proline residues between its subdomains (EF-hands), formed three oligomeric structures, in addition to the monomer. The aggregates were stable and only weakly dependent on conditions such as pH, temperature and ionic strength (in non-extreme ranges). However, there needed to be high enough Ca2+ concentration present to saturate the proteins. Towards the end of the project, a protein batch from another part of the purification process was used, and these results seem even more promising, indicating that the proteins formed aggregates with radii about 15 times the monomeric radius. (Less)
Please use this url to cite or link to this publication:
author
Carlsson, Andreas LU
supervisor
organization
course
KFKM05 20211
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
protein material, domain swapping, EF-hand, calbindin D9k, Ca2+ dependent, aggregation, S100G, protein design, biophysical chemistry
language
English
id
9057643
date added to LUP
2021-07-01 16:08:52
date last changed
2021-07-01 16:08:52
@misc{9057643,
  abstract     = {{To build materials of proteins is an art that nature is a specialists in. But when we actively try to design protein materials, it becomes clear how complex and hard to control the biophysical world is. This master thesis aims to lay the foundation for a protein material that forms and dissociates as a response to changed Ca2+ concentration. If such a material is to be produced with an ordered structure, it might absorb specific molecules, such as a medical substance, and release it under a certain condition. The building block used in this project is a Ca2+ transporting protein in our bodies, called S100G. To understand how this protein suitably forms aggregates, the project mainly deals with evaluation of aggregation conditions, to find out when this is happening and for which mutations of S100G it occurs the most. To accomplish this goal, native gel electrophoresis and size exclusion chromatography have been used. The results show that S100G, with an extra inserted linker of nine proline residues between its subdomains (EF-hands), formed three oligomeric structures, in addition to the monomer. The aggregates were stable and only weakly dependent on conditions such as pH, temperature and ionic strength (in non-extreme ranges). However, there needed to be high enough Ca2+ concentration present to saturate the proteins. Towards the end of the project, a protein batch from another part of the purification process was used, and these results seem even more promising, indicating that the proteins formed aggregates with radii about 15 times the monomeric radius.}},
  author       = {{Carlsson, Andreas}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Towards Ca2+ Responsive Reticular Materials. An Evaluation of Suitable Conditions for Self-Assembly of the Protein S100G}},
  year         = {{2021}},
}