Classification of almost monomial subalgebras of small codimension
(2023) In Bachelor's Theses in Mathematical Sciences MATK11 20231Mathematics (Faculty of Engineering)
Mathematics (Faculty of Sciences)
Centre for Mathematical Sciences
- Abstract
- In this text, we study almost monomial subalgebras using LAGBI bases. We
introduce the concept of a LAGBI base and present an algorithm for computing
them. We then use this algorithm to find, and present in a table, all polynomial
subalgebras with Frobenius number smaller than or equal to ten. We then prove
that some patterns observed in this table hold. Lastly we give a proof of what
properties isomorphic subalgebras must have and use this to find all polynomial
subalgebras up to isomorphism with Frobenius number up to five. - Popular Abstract (Swedish)
- Inom matematiken är det ofta intressant att studera olika strukturer, deras
egenskaper, och hur man bäst representerar dem. Så kallade ideal av ringar är
ett välstuderat område, men en liknande klass av strukturer kallad subalgebror
är hittills mindre studerade. I denna text ges grundläggande definitioner och
satser relaterat till LAGBI baser som sedan används för att klassificera vissa
polynomsubalgebror med liten kodimension.
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/9130899
- author
- Sundell, Ludvig LU
- supervisor
- organization
- course
- MATK11 20231
- year
- 2023
- type
- M2 - Bachelor Degree
- subject
- keywords
- Algebra, Subalgebra, Polynomial, SAGBI basis, LAGBI basis, Lower semigroup
- publication/series
- Bachelor's Theses in Mathematical Sciences
- report number
- LUNFMA-4146-2023
- ISSN
- 1654-6229
- other publication id
- 2023:K16
- language
- English
- id
- 9130899
- date added to LUP
- 2023-07-05 15:50:20
- date last changed
- 2023-07-05 15:50:20
@misc{9130899, abstract = {{In this text, we study almost monomial subalgebras using LAGBI bases. We introduce the concept of a LAGBI base and present an algorithm for computing them. We then use this algorithm to find, and present in a table, all polynomial subalgebras with Frobenius number smaller than or equal to ten. We then prove that some patterns observed in this table hold. Lastly we give a proof of what properties isomorphic subalgebras must have and use this to find all polynomial subalgebras up to isomorphism with Frobenius number up to five.}}, author = {{Sundell, Ludvig}}, issn = {{1654-6229}}, language = {{eng}}, note = {{Student Paper}}, series = {{Bachelor's Theses in Mathematical Sciences}}, title = {{Classification of almost monomial subalgebras of small codimension}}, year = {{2023}}, }