Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

PIM Characterization of 3D-printed RF Components

Karlsson, Josefin LU (2024) EITM01 20241
Department of Electrical and Information Technology
Abstract
As two signals of different frequencies pass through a nonlinear element, they mix and create unwanted spurious signals. This intermodulation phenomenon is well studied for active components but can also occur from the material in passive components and is then called passive intermodulation (PIM). The PIM energy levels are a concern when designing communication technology, especially satellites, since the PIM signal can drown the information signal.

Concurrently, new manufacture technology is innovated to allow for low waste, free-form fabrication by 3D-printing components in metal. Though advantageous, the intermodulation behavior of the material in 3D-printed metal is unknown, limiting its use in communication system. Therefore,... (More)
As two signals of different frequencies pass through a nonlinear element, they mix and create unwanted spurious signals. This intermodulation phenomenon is well studied for active components but can also occur from the material in passive components and is then called passive intermodulation (PIM). The PIM energy levels are a concern when designing communication technology, especially satellites, since the PIM signal can drown the information signal.

Concurrently, new manufacture technology is innovated to allow for low waste, free-form fabrication by 3D-printing components in metal. Though advantageous, the intermodulation behavior of the material in 3D-printed metal is unknown, limiting its use in communication system. Therefore, gaining a deeper understanding of PIM behavior in 3D-printed components is essential to fully harness the potential of 3D-printing technology.

The thesis investigates how the PIM-performance of radio frequency (RF) parts manufactured by metal 3D-printing compare to standard subtractive manufacture milling technology. An X-band test setup is designed, including a coaxial rectangular waveguide with a 3D-printed metal sample as the test object. The applied power is varied and the corresponding PIM level is measured. The same test is performed with a milled test sample. The results are compared and conclude that 3D-printed samples on average perform 5 dB worse than milled samples. Within the industry, this degradation is deemed acceptable when accounting for the other benefits the manufacture method intel. This result supports the theory that there is a connection between the porosity of a material and the PIM level it induces. Overall, the test setup was designed successfully and the PIM levels of 3D-printed RF components could be measured and characterized. Future research within the field is however crucial to deepen our understanding. By continuing to explore these areas, the potential for improving the reliability and performance of AM-SLM printed components in electromagnetic applications can be significantly enhanced. (Less)
Popular Abstract (Swedish)
I dagens globala samhälle finns en växande efterfrågan på trådlös kommunikation. För att möta denna efterfrågan behöver kommunikationssystemen utvecklas, till exempel genom att använda högre frekvenser som i 5G, öka antalet användare som kan använda systemet samtidigt eller använda större antennsystem. Detta ökar dock risken för störningar mellan användares kommunikationslänkar, vilket leder till sämre prestanda.

När två signaler med olika frekvenser går igenom en icke-linjär elektronisk komponent, blandas de och skapar nya signaler, vilket kallas intermodulation. Problem uppstår när den blandade signalen hamnar i ett mottagarband, likt hur ljud från andra samtal kan störa ett samtal i ett fullsatt rum. Intermodulation har studerats... (More)
I dagens globala samhälle finns en växande efterfrågan på trådlös kommunikation. För att möta denna efterfrågan behöver kommunikationssystemen utvecklas, till exempel genom att använda högre frekvenser som i 5G, öka antalet användare som kan använda systemet samtidigt eller använda större antennsystem. Detta ökar dock risken för störningar mellan användares kommunikationslänkar, vilket leder till sämre prestanda.

När två signaler med olika frekvenser går igenom en icke-linjär elektronisk komponent, blandas de och skapar nya signaler, vilket kallas intermodulation. Problem uppstår när den blandade signalen hamnar i ett mottagarband, likt hur ljud från andra samtal kan störa ett samtal i ett fullsatt rum. Intermodulation har studerats mycket för aktiva komponenter som transistorer och integrerade kretsar, som behöver ström för att fungera och kan förstärka signaler. Men intermodulation kan också ske i passiva komponenter, som inte behöver ström. När detta händer på grund av materialets egenskaper kallas det PIM (Passiv Intermodulation).

Nya tillverkningsteknologier som 3D-printing av metall möjliggör mindre restprodukter och friare geometrier. Trots många fördelar är intermodulationsbeteendet hos 3D-printad metall okänt, vilket begränsar användningen inom kommunikationssystem. Därför är en djupare förståelse av PIM i 3D-printade komponenter viktig.

Denna avhandling undersöker hur PIM-prestandan hos RF-komponenter på\-verk\-as av 3D-printing jämfört med traditionella metoder som svarvning. En test\-upp\-ställning för höga frekvenser designades, där metallprover skapades med både 3D-printning och fräsning. Resultaten visar att 3D-printade prover presterade i snitt 5 dB sämre än frästa prover, vilket anses acceptabelt inom industrin för de fördelar som 3D-printning ger. Projektet skapade en framgångsrik testupp\-ställning och resultaten visar en lovande start för 3D-printning av elektromagnetiska RF-komponenter. Vidare forskning behövs för att säkerställa resultaten och göra 3D-printning tillämpbar inom satellit- och mobilindustrin. (Less)
Please use this url to cite or link to this publication:
author
Karlsson, Josefin LU
supervisor
organization
course
EITM01 20241
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Intermodulation distortion, passive intermodulation, nonlinear analysis, additive manufacturing, AM-SLM, surface roughness, electrical conductivity
report number
LU/LTH-EIT 2024-984
language
English
id
9163641
date added to LUP
2024-06-17 10:59:32
date last changed
2024-06-17 10:59:32
@misc{9163641,
  abstract     = {{As two signals of different frequencies pass through a nonlinear element, they mix and create unwanted spurious signals. This intermodulation phenomenon is well studied for active components but can also occur from the material in passive components and is then called passive intermodulation (PIM). The PIM energy levels are a concern when designing communication technology, especially satellites, since the PIM signal can drown the information signal. 

Concurrently, new manufacture technology is innovated to allow for low waste, free-form fabrication by 3D-printing components in metal. Though advantageous, the intermodulation behavior of the material in 3D-printed metal is unknown, limiting its use in communication system. Therefore, gaining a deeper understanding of PIM behavior in 3D-printed components is essential to fully harness the potential of 3D-printing technology.

The thesis investigates how the PIM-performance of radio frequency (RF) parts manufactured by metal 3D-printing compare to standard subtractive manufacture milling technology. An X-band test setup is designed, including a coaxial rectangular waveguide with a 3D-printed metal sample as the test object. The applied power is varied and the corresponding PIM level is measured. The same test is performed with a milled test sample. The results are compared and conclude that 3D-printed samples on average perform 5 dB worse than milled samples. Within the industry, this degradation is deemed acceptable when accounting for the other benefits the manufacture method intel. This result supports the theory that there is a connection between the porosity of a material and the PIM level it induces. Overall, the test setup was designed successfully and the PIM levels of 3D-printed RF components could be measured and characterized. Future research within the field is however crucial to deepen our understanding. By continuing to explore these areas, the potential for improving the reliability and performance of AM-SLM printed components in electromagnetic applications can be significantly enhanced.}},
  author       = {{Karlsson, Josefin}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{PIM Characterization of 3D-printed RF Components}},
  year         = {{2024}},
}