Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Parametrisk design & miljöoptimering av industritrapptorn

Teinert, Victor LU and Ståhl, Sebastian LU (2024) In 0349-4969 VBKM01 20241
Division of Structural Engineering
Abstract (Swedish)
Att byggsektorn står inför ett rådande klimatnödläge är ett faktum. Idag investeras hundratals miljarder kronor för att i framtiden kunna producera fossilfritt stål; trots det läggs lite fokus på miljöoptimering av konstruktioner. Syftet med arbetet är att utvärdera hur parametrisk design kan användas som verktyg för att miljöoptimera stålstommar i industritrapptorn samt undersöka vilken profiltyp som ger minst klimatavtryck.
Parametrisk design innebär att man med hjälp av variabler och designparametrar bygger upp geometrin för konstruktioner. Genom att ändra de parametriserade variablerna kan man enkelt ändra en konstruktions geometri. Trapptorn är konstruktioner med hög redundans och geometrin har en enkel matematisk beskrivning, vilket... (More)
Att byggsektorn står inför ett rådande klimatnödläge är ett faktum. Idag investeras hundratals miljarder kronor för att i framtiden kunna producera fossilfritt stål; trots det läggs lite fokus på miljöoptimering av konstruktioner. Syftet med arbetet är att utvärdera hur parametrisk design kan användas som verktyg för att miljöoptimera stålstommar i industritrapptorn samt undersöka vilken profiltyp som ger minst klimatavtryck.
Parametrisk design innebär att man med hjälp av variabler och designparametrar bygger upp geometrin för konstruktioner. Genom att ändra de parametriserade variablerna kan man enkelt ändra en konstruktions geometri. Trapptorn är konstruktioner med hög redundans och geometrin har en enkel matematisk beskrivning, vilket gör det relativt enkelt att använda parametrisk design för den typen av konstruktion.
Arbetet tar enbart hänsyn till miljöpåverkan av trapptornets bärande stålstomme och dess rostskyddsmålning. De profiltyper som analyseras är kvadratiska kallformade konstruktionsrör (KKR), kvadratiska varmformade konstruktionsrör (VKR) och HEA-profiler. HEA-profiler har ett lägre klimatavtryck per kg stål jämfört med konstruktionsrören men har en större mantelarea, vilket ökar åtgången av rostskyddsmålning.
Huvuddelen av arbetet gick ut på att skapa ett skript i det parametriska verktyget Grasshopper. Skriptet använder parametrisk design för att automatisera uppbyggandet av trapptornsmodeller. Användaren anger indata som till exempel våningshöjder och lutning på trappan, därefter bygger skriptet upp en trapptornsgeometri som förhåller sig till relevanta standarder och byggregler.
Grasshopper-skriptet innehåller även en koppling till FEM-programvaran RFEM 6 samt den genetiska optimeringsalgoritmen Galapagos. All data som krävs för att utföra en FEM-analys skapas i Grasshopper och exporteras sedan till RFEM 6 där analyserna utförs. Resultatet importeras sedan tillbaka till Grasshopper och utvärderas av Galapagos. Galapagos kan därefter påbörja en ny optimeringsiteration genom att ändra på de parametriserade variablerna och skapa en ny trapptornskonstruktion med annorlunda geometri och tvärsnitt. Denna slutna process fortlöper tills Galapagos har hittat en lösning med så lågt klimatavtryck som möjligt, utan att utnyttjandegraden överstiger 100%.
För att utvärdera skriptets funktionalitet görs ett försök att återskapa ett redan projekterat och dimensionerat projekt. Skriptet lyckades återskapa trapptornet med nästintill identisk geometri och stålvikt. Sedermera optimerades konstruktionen med tre olika profiltyper, KKR, VKR och HEA. Resultatet från optimeringen visar att en trapptornsstomme med stängda profiler blir både lättare och får mindre miljöpåverkan. Mellan de stängda profilerna är skillnaden nästan försumbar. Skriptet lyckades även med hjälp av optimeringen minska referensprojektets utsläpp av koldioxidekvivalenter med drygt 40%. (Less)
Abstract
The fact that the construction sector faces a prevailing climate emergency is undeniable. Today, hundreds of billions of kronor are being invested to develop fossil-free steel; yet little focus is placed on environmental optimization of constructions. The purpose of this work is to evaluate how parametric design can be used as a tool for environmental optimization of steel staircase towers, as well as to investigate which type of profile provides the least climate impact.
Parametric design means that geometry of the structure is built up using variables and design parameters. By changing the parametrized variables, the geometry can be easily altered. Staircase towers are constructions with high redundancy, and the geometry has a simple... (More)
The fact that the construction sector faces a prevailing climate emergency is undeniable. Today, hundreds of billions of kronor are being invested to develop fossil-free steel; yet little focus is placed on environmental optimization of constructions. The purpose of this work is to evaluate how parametric design can be used as a tool for environmental optimization of steel staircase towers, as well as to investigate which type of profile provides the least climate impact.
Parametric design means that geometry of the structure is built up using variables and design parameters. By changing the parametrized variables, the geometry can be easily altered. Staircase towers are constructions with high redundancy, and the geometry has a simple mathematical description. This makes it relatively easy to use parametric design for this type of structure.
The work only considers the environmental impact of the load bearing elements and its corrosion protection paint. The profile types analysed are cold-formed structural tubes (CFRHS), square hot-formed structural tubes (HFRHS), and HEA profiles. HEA profiles have a lower climate footprint per kilogram of steel compared to the structural tubes but have a larger surface area, which increases the amount of corrosion protection paint required.
The main part of the work involved creating a script in the parametric tool Grasshopper. The script uses parametric design to automate the creation of calculation models for the towers. The user enters data such as floor heights and the inclination of the stairs, and then the script builds up a stair tower geometry that adheres to relevant standards and building regulations.
The Grasshopper script also includes a link to the FEM software RFEM 6 and the genetic optimization algorithm Galapagos. All the data required to perform an FEM analysis is created in Grasshopper and then exported to RFEM 6, where the analyses are performed. The result is then imported back to Grasshopper and evaluated by Galapagos. Galapagos can then start a new optimization iteration by changing the parametrized variables and creating a new model with different geometry and cross-section. This closed process continues until Galapagos finds a solution with minimized climate footprint, without exceeding the load bearing capacity.
To validate the script, it is applied to an existing construction project of a steel staircase tower. The script succeeded in recreating the stair tower with almost identical geometry and steel weight as the original project. Subsequently, the structures were optimized with three different profile types, CFRHS, HFRHS, and HEA. The results from the optimization show that a structure with closed profiles becomes both lighter and has less environmental impact. The difference between the solution with closed profiles is almost negligible. The script also succeeded, with the help of optimization, in reducing the reference project's emissions of carbon dioxide equivalents by just over 40%. (Less)
Popular Abstract (Swedish)
Parametrisk design i kombination med miljöoptimering kan minska byggsektorns klimatavtryck avsevärt. Dessa verktyg möjliggör för konstruktören att snabbt undersöka, optimera och därmed minska en stålkonstruktions utsläpp.
Please use this url to cite or link to this publication:
author
Teinert, Victor LU and Ståhl, Sebastian LU
supervisor
organization
alternative title
Parametric design & environmental optimization of industrial staircase towers
course
VBKM01 20241
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Parametrisk design, automatisering, trapptorn, industritrapptorn, parametric design, automation, staircase tower
publication/series
0349-4969
report number
5302
other publication id
LUTVDG/TVBK-24/5302-SE
language
Swedish
additional info
Handledare: Ivar Björnsson
Examinator: Jonas Niklewski
id
9163946
date added to LUP
2024-06-24 10:59:22
date last changed
2024-06-24 10:59:22
@misc{9163946,
  abstract     = {{The fact that the construction sector faces a prevailing climate emergency is undeniable. Today, hundreds of billions of kronor are being invested to develop fossil-free steel; yet little focus is placed on environmental optimization of constructions. The purpose of this work is to evaluate how parametric design can be used as a tool for environmental optimization of steel staircase towers, as well as to investigate which type of profile provides the least climate impact.
Parametric design means that geometry of the structure is built up using variables and design parameters. By changing the parametrized variables, the geometry can be easily altered. Staircase towers are constructions with high redundancy, and the geometry has a simple mathematical description. This makes it relatively easy to use parametric design for this type of structure.
The work only considers the environmental impact of the load bearing elements and its corrosion protection paint. The profile types analysed are cold-formed structural tubes (CFRHS), square hot-formed structural tubes (HFRHS), and HEA profiles. HEA profiles have a lower climate footprint per kilogram of steel compared to the structural tubes but have a larger surface area, which increases the amount of corrosion protection paint required.
The main part of the work involved creating a script in the parametric tool Grasshopper. The script uses parametric design to automate the creation of calculation models for the towers. The user enters data such as floor heights and the inclination of the stairs, and then the script builds up a stair tower geometry that adheres to relevant standards and building regulations.
The Grasshopper script also includes a link to the FEM software RFEM 6 and the genetic optimization algorithm Galapagos. All the data required to perform an FEM analysis is created in Grasshopper and then exported to RFEM 6, where the analyses are performed. The result is then imported back to Grasshopper and evaluated by Galapagos. Galapagos can then start a new optimization iteration by changing the parametrized variables and creating a new model with different geometry and cross-section. This closed process continues until Galapagos finds a solution with minimized climate footprint, without exceeding the load bearing capacity.
To validate the script, it is applied to an existing construction project of a steel staircase tower. The script succeeded in recreating the stair tower with almost identical geometry and steel weight as the original project. Subsequently, the structures were optimized with three different profile types, CFRHS, HFRHS, and HEA. The results from the optimization show that a structure with closed profiles becomes both lighter and has less environmental impact. The difference between the solution with closed profiles is almost negligible. The script also succeeded, with the help of optimization, in reducing the reference project's emissions of carbon dioxide equivalents by just over 40%.}},
  author       = {{Teinert, Victor and Ståhl, Sebastian}},
  language     = {{swe}},
  note         = {{Student Paper}},
  series       = {{0349-4969}},
  title        = {{Parametrisk design & miljöoptimering av industritrapptorn}},
  year         = {{2024}},
}