Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Luft, vatten och saltvattens inverkan på asfalt över tid

Malmberg, Ted LU (2024) VTVL01 20241
Transport and Roads
Abstract
This study aims to investigate how salt solution affects typical road wear courses in contrast to how air and water affect road surfaces. The wear layers are represented by the asphalt concrete Porous Asphalt (PA or ABD11 70/100) which is a draining road surface and Stone Mastic Asphalt (SMA or ABS11 70/100) which is a dense road surface. PA and SMA were used as contrasts to use in the experiment because PA has a much larger cavity than SMA and the influence of external substances can differentiate the wear layer types. To be able to compare how the wear layer types are affected by the different media of storage, a total of 62 asphalt samples were produced, of which 31 were of the PA type and 31 of the SMA type. An asphalt specimen has a... (More)
This study aims to investigate how salt solution affects typical road wear courses in contrast to how air and water affect road surfaces. The wear layers are represented by the asphalt concrete Porous Asphalt (PA or ABD11 70/100) which is a draining road surface and Stone Mastic Asphalt (SMA or ABS11 70/100) which is a dense road surface. PA and SMA were used as contrasts to use in the experiment because PA has a much larger cavity than SMA and the influence of external substances can differentiate the wear layer types. To be able to compare how the wear layer types are affected by the different media of storage, a total of 62 asphalt samples were produced, of which 31 were of the PA type and 31 of the SMA type. An asphalt specimen has a cylindrical form and has approximately dimensions of ᴓ102mm and a normal height of 60-75mm. Of the respective 31 asphalt samples, four were initially tested after manufacture as reference values and then nine were placed in a closed air vessel, nine in a closed water vessel and nine in a closed saltwater vessel with a salt concentration of 23%. The saltwater concentration of 23% was determined based on the eutectic properties of salt solution, where salt theoretically can melt ice down to -21oC.The asphalt samples were produced over four days, where the first SMA-samples were produced over two days. Six days later, the PA-samples were produced over two days. In the manufacturing process, accepted methods and international standards were used. During the experiment, three of each air-stored, water-stored, and salt-water-stored specimens were tested after 6, 14 and 28 days for both the PA and SMA samples. The samples were tested with Marshall stability tests and the asphalt samples were preheated in a water bath to 40.0oC. An inconsistency occurred when preheating the reference samples where they were heated to 46.6oC. Before each test, the asphalt samples were studied visually. The ocular assessment shows that the asphalt samples stored in saltwater get small air bubbles around and that the salt water is very clear, while the asphalt samples stored in water initially acquire occasional air bubbles around them at the 6th day of storage but later are completely gone at the 14th day of storage. The asphalt samples resting in water alone acquire a browner colour over time, this observation is the same for both PA and SMA, but there was a certain time difference in when and how much the different changes occur. The water which SMA rested in, became browner than the water containing the PA. The results of the Marshall stability test show that the weight of the specimen plays a major role in the force that the asphalt specimen can withstand. For the air-stored samples, the results show that the PA tests after 6 and 14 days have similar Marshall stability, but that there is a deterioration for the samples tested after 28 days. For the PA samples, there is a minor decrease in stability for the tests performed after 14 and 28 days. The SMA samples show better stability in air. For the water-stored asphalt samples, the SMA samples show the highest Marshall stability both after 6 and 14 days. In contrast, the SMA samples show a reduced stability after 28 days in water. The PA samples, on the other hand, show a worse stability than the SMA samples for 6 and 14 days, but better after 28 days. The PA samples show that the largest break point in stability is found in the tests performed after 14 and 28 days in comparison with the 6-day test. The saltwater-stored specimens for both PA and SMA showed similar stability throughout all storage times. On the other hand, they performed worse than the SMA samples in air and water after 6 and 14 days, respectively, but perform better than the other samples, apart from the air-stored ABS samples, after 28 days. In general, it can be said that the saltwater-stored specimens maintained
consistent Marshall stability over time, a possible reason for this difference is suggested to be osmosis. (Less)
Abstract (Swedish)
Denna studie åsyftar att utreda hur saltlösning påverkar vanliga slitlager i kontrast till hur luft samt vatten påverkar slitlager. Slitlagerna representerades av asfalttyperna asfaltbetong, dränerande (ABD11 70/100) vilken är en dränerande beläggning samt asfaltbetong, stenrik (ABS11 70/100) som är en tät beläggning. ABD och ABS användes i experimentet eftersom ABD har en högre hålrumshalt än ABS vilket kan betyda att inverkan från yttre substanser kan skilja slitlagertyperna åt. För att kunna jämföra hur slitlagertyperna påverkas av de olika lagringsmedierna tillverkades totalt 62 asfaltprovkroppar varav 31 av sorten ABD11 70/100 och 31 av sorten ABS11 70/100. En asfaltprovkropp har en cylindrisk form och har dimensionerna ᴓ102mm samt... (More)
Denna studie åsyftar att utreda hur saltlösning påverkar vanliga slitlager i kontrast till hur luft samt vatten påverkar slitlager. Slitlagerna representerades av asfalttyperna asfaltbetong, dränerande (ABD11 70/100) vilken är en dränerande beläggning samt asfaltbetong, stenrik (ABS11 70/100) som är en tät beläggning. ABD och ABS användes i experimentet eftersom ABD har en högre hålrumshalt än ABS vilket kan betyda att inverkan från yttre substanser kan skilja slitlagertyperna åt. För att kunna jämföra hur slitlagertyperna påverkas av de olika lagringsmedierna tillverkades totalt 62 asfaltprovkroppar varav 31 av sorten ABD11 70/100 och 31 av sorten ABS11 70/100. En asfaltprovkropp har en cylindrisk form och har dimensionerna ᴓ102mm samt standardhöjd på 60-75mm. Av de respektive 30 asfaltprovkropparna testades inledningsvis fyra efter tillverkning som referensvärden och sedan placerades nio i ett slutet luftkärl, nio i ett slutet vattenkärl samt nio i ett slutet saltvattenkärl med en saltkoncentration på 23%. Saltvattenkoncentrationen på 23% bestämdes utifrån saltlösnings eutektiska egenskaper, där salt med denna koncentration teoretiskt kan smälta is ner till -21ºC. Asfaltprovkropparna tillverkades under fyra dagar, där de första ABS-provkropparna tillverkades under två dagar. Sex dygn senare tillverkades ABD-proverna under två dagar. I tillverkningsprocessen användes vedertagna metoder och internationella standarder. Under experimentets gång testades tre av vartdera luftlagrade, vattenlagrade och saltvattenlagrade provkroppar efter 6, 14 och 28 dygn för både ABD- och ABS-proverna. Provkropparna testades med Marshallstabilitetstest och förvärmdes i vattenbad till 40,0ºC. En avvikelse skedde vid förvärmning av samtliga referensprover där de värmdes till 46,6ºC vilket bedöms påverka resultatet. Inför varje test studerades asfaltprovkropparna okulärt. Den okulära bedömningen visar att de saltvattenlagrade asfaltprovkropparna får små luftbubblor kring sig samt att saltvattnet förhåller sig klart. Vattnet som de
vattenlagrade asfaltprovkropparna vilar i visar inledningsvis enstaka luftbubblor kring sig, vid 6 dygns lagring, men är helt borta efter 14 dygns lagring. Asfaltprovkropparna som vilar i enbart vatten erhåller en brunare färg över tid. Denna observation är likadan för både ABS och ABD, men där det finns en viss tidsskillnad i när och hur mycket de olika förändringarna utvecklas. Vattnet som ABS vilade i blev brunare än vattnet som innehöll ABD. Resultaten av Marshallstabilitetstestet visar att vikten hos provkroppen spelar roll för kraften som asfaltprovkroppen tål. För de luftlagrade provkropparna
visar resultaten att ABD-testerna efter 6 respektive 14 dygn har inbördes liknande Marshallstabilitet men att där sker en försämring för proverna efter 28 dygn. För ABD-proverna finns en mindre nedgång i Marshallstabiliteten för testerna utförda efter 14 och 28 dygn. ABS-proverna visar bättre Marshallstabilitet i luft. För de vattenlagrade asfaltproverna visar ABS-proverna den högsta Marshallstabiliteten både efter 6 och 14 dygn. Däremot visar ABS-proverna en försämrad stabilitet efter 28 dygn i vatten. ABD-proverna å andra sidan, visar en sämre Marshallstabilitet än ABS-proverna för 6 och 14 dygn, men bättre efter 28 dygn. ABD-proverna visar att det största brytpunkten i stabilitet återfinns i testerna utförda efter 14 och 28 dygn i jämförelse med 6 dygnstestet. De saltvattenlagrade provkropparna för både ABD och ABS visade snarlik stabilitet genom alla lagringstider. Däremot visade de en sämre Marshallstabilitet än ABS-proverna i luft och vatten efter 6 respektive 14 dygn men påvisar bättre stabilitet än övriga provkroppar, förutom de luftlagrade ABS-proverna, efter 28 dygn. Generellt kan sägas att de saltvattenlagrade provkropparna erhåller en konsekvent marshallstabilitet över tid, möjlig orsak till denna skillnad föreslås vara osmos. (Less)
Please use this url to cite or link to this publication:
@misc{9165476,
  abstract     = {{This study aims to investigate how salt solution affects typical road wear courses in contrast to how air and water affect road surfaces. The wear layers are represented by the asphalt concrete Porous Asphalt (PA or ABD11 70/100) which is a draining road surface and Stone Mastic Asphalt (SMA or ABS11 70/100) which is a dense road surface. PA and SMA were used as contrasts to use in the experiment because PA has a much larger cavity than SMA and the influence of external substances can differentiate the wear layer types. To be able to compare how the wear layer types are affected by the different media of storage, a total of 62 asphalt samples were produced, of which 31 were of the PA type and 31 of the SMA type. An asphalt specimen has a cylindrical form and has approximately dimensions of ᴓ102mm and a normal height of 60-75mm. Of the respective 31 asphalt samples, four were initially tested after manufacture as reference values and then nine were placed in a closed air vessel, nine in a closed water vessel and nine in a closed saltwater vessel with a salt concentration of 23%. The saltwater concentration of 23% was determined based on the eutectic properties of salt solution, where salt theoretically can melt ice down to -21oC.The asphalt samples were produced over four days, where the first SMA-samples were produced over two days. Six days later, the PA-samples were produced over two days. In the manufacturing process, accepted methods and international standards were used. During the experiment, three of each air-stored, water-stored, and salt-water-stored specimens were tested after 6, 14 and 28 days for both the PA and SMA samples. The samples were tested with Marshall stability tests and the asphalt samples were preheated in a water bath to 40.0oC. An inconsistency occurred when preheating the reference samples where they were heated to 46.6oC. Before each test, the asphalt samples were studied visually. The ocular assessment shows that the asphalt samples stored in saltwater get small air bubbles around and that the salt water is very clear, while the asphalt samples stored in water initially acquire occasional air bubbles around them at the 6th day of storage but later are completely gone at the 14th day of storage. The asphalt samples resting in water alone acquire a browner colour over time, this observation is the same for both PA and SMA, but there was a certain time difference in when and how much the different changes occur. The water which SMA rested in, became browner than the water containing the PA. The results of the Marshall stability test show that the weight of the specimen plays a major role in the force that the asphalt specimen can withstand. For the air-stored samples, the results show that the PA tests after 6 and 14 days have similar Marshall stability, but that there is a deterioration for the samples tested after 28 days. For the PA samples, there is a minor decrease in stability for the tests performed after 14 and 28 days. The SMA samples show better stability in air. For the water-stored asphalt samples, the SMA samples show the highest Marshall stability both after 6 and 14 days. In contrast, the SMA samples show a reduced stability after 28 days in water. The PA samples, on the other hand, show a worse stability than the SMA samples for 6 and 14 days, but better after 28 days. The PA samples show that the largest break point in stability is found in the tests performed after 14 and 28 days in comparison with the 6-day test. The saltwater-stored specimens for both PA and SMA showed similar stability throughout all storage times. On the other hand, they performed worse than the SMA samples in air and water after 6 and 14 days, respectively, but perform better than the other samples, apart from the air-stored ABS samples, after 28 days. In general, it can be said that the saltwater-stored specimens maintained
consistent Marshall stability over time, a possible reason for this difference is suggested to be osmosis.}},
  author       = {{Malmberg, Ted}},
  language     = {{swe}},
  note         = {{Student Paper}},
  title        = {{Luft, vatten och saltvattens inverkan på asfalt över tid}},
  year         = {{2024}},
}