Analyzing the regeneration behavior of AMP and DMSO in Carbon Capture with varying water content
(2023) KETM05 20232Chemical Engineering (M.Sc.Eng.)
- Abstract
- Chemical absorption of acidic gases, such as CO2, using amines, is a mature technique within Carbon Capture and Storage (CCS) and rely on the equilibrium reaction for both absorption and desorption. Carbon Capture and Storage systems are suggested as viable key processes to reduce anthropogenic carbon in the atmosphere. However, the technique is divided into two different approaches: pre-combustion and post-combustion. Post-combustion is the most convenient method for already existing plants as it can be retroactively fitted at the end of the process.
Utilizing the primary amine MEA in aqueous conditions has been widely used for CCS processes, but recently a more novel technique was presented with promising properties. By exchanging MEA... (More) - Chemical absorption of acidic gases, such as CO2, using amines, is a mature technique within Carbon Capture and Storage (CCS) and rely on the equilibrium reaction for both absorption and desorption. Carbon Capture and Storage systems are suggested as viable key processes to reduce anthropogenic carbon in the atmosphere. However, the technique is divided into two different approaches: pre-combustion and post-combustion. Post-combustion is the most convenient method for already existing plants as it can be retroactively fitted at the end of the process.
Utilizing the primary amine MEA in aqueous conditions has been widely used for CCS processes, but recently a more novel technique was presented with promising properties. By exchanging MEA with the sterically hindered amine AMP, together with the organic solvent DMSO during water-lean or non-aqueous conditions, a less stable carbamate will form when absorbing CO2. Due to the less stable sterically hindered carbamate produced, the regeneration temperature could be decreased, lowering the energy demand for CCS processes. This innovative technology has less available data than its predecessor and is still in the pilot stage. Because of this, a proper investigation of its behavior is necessary to determine if it has more potential than the conventional technology. As of today it is not entirely clear how the properties of the solvent will shift with successively increasing water content, and therefore the final composition after regeneration and how it will affect the amount of CO2 stripped from the solvent. The investigation will also provide information on what problems may arise when the process is possibly industrialized, for example cyclic capacity and corrosion.
When investigating the solution's behavior during regeneration experiments, a multi-flask evaporator connected to a vacuum pump was used. This setup made it possible to resemble the pilot plant by enabling to control temperature, pressure, and stirring of the solution similar to the pilot plant. With the hygroscopic chemical DMSO as the solvent present in the solution, it might attract water into the system due to humid flue gases entering the system. This will cause water to accumulate in the system. If water is present, the predicted properties of the system will not match reality by allowing an alternative reaction pathway to form a more stable carbamate. Therefore, the regeneration of solutions with different water contents must also be investigated to discover the outcome.
The investigation demonstrated how the water content affected how well the regeneration for the solvent occurred. A difficulty in solving the precipitation containing CO2 could be seen for solutions with a higher concentration of water, indicating that an increase in temperature or lower pressure during regeneration in the pilot is necessary to not lose some of the proposed advantages of reducing the energy consumption with the non-aqueous system with AMP and DMSO. (Less) - Popular Abstract (Swedish)
- Fossila bränslen har sedan den industriella revolutionen under 1800-talet dominerat som en användbar energiresurs. Med den ökade förbränningen av kolvätena, som länge har varit lagrade i marken i olika former, har även mängden koldioxid, $\mathrm{CO_2}$, ökat i atmosfären. Koldioxid är en växthusgas och bidrar till den omtalade växthuseffekten, vilket resulterar i en ökad temperatur. Denna ökade temperatur leder till andra konsekvenser som påverkar världens befolkning på flera sätt.\\
Koldioxidinfångning är en teknik som många industrier har använt i flera år. Tidigare har dess främsta syfte inte varit att rena gaserna från $\mathrm{CO_2}$ för att förhindra att den når atmosfären, utan snarare har den använts för att förbättra renheten... (More) - Fossila bränslen har sedan den industriella revolutionen under 1800-talet dominerat som en användbar energiresurs. Med den ökade förbränningen av kolvätena, som länge har varit lagrade i marken i olika former, har även mängden koldioxid, $\mathrm{CO_2}$, ökat i atmosfären. Koldioxid är en växthusgas och bidrar till den omtalade växthuseffekten, vilket resulterar i en ökad temperatur. Denna ökade temperatur leder till andra konsekvenser som påverkar världens befolkning på flera sätt.\\
Koldioxidinfångning är en teknik som många industrier har använt i flera år. Tidigare har dess främsta syfte inte varit att rena gaserna från $\mathrm{CO_2}$ för att förhindra att den når atmosfären, utan snarare har den använts för att förbättra renheten hos gasflöden i olika processer. Det finns flera olika varianter av denna process, inklusive olika kemiska lösningar för att absorbera växthusgasen. Den vanligaste designen är en anläggning som integreras i slutet av en befintlig process.\\
Under lång tid har monoetanolamin (MEA) varit den mest använda kemikalien och ansetts varit en standard design för att nå bra prestanda och eftertraktade egenskaper. På senare tid har andra kemiska blandningar, innehållande primära aminer och organiska lösningsmedel, fått mer uppmärksamhet. Dessa alternativ har utforskats och visat önskvärt beteende samt möjliggjort en minskning av energibehovet genom att eliminera vatten från processen, och på så vis minska energibehovet för att nå en önskad temperaturhöjning. Tidigare problem med MEA har inkluderat det höga energibehovet för regenereringen av lösningsmedlet, vilket kräver en temperaturhöjning. Denna utmaning mildras genom att undvika vatten i processen, då den fällning som bildas med hjälp av en steriskt hindrad amin är mindre stabil och kräver mindre energi för att återgå till den ursprungliga aminen och det organiska lösningsmedlet. Trots upptäckten av nya lösningar är inte deras egenskaper och beteende helt kända, vilket kräver grundlig undersökning av de ingående kemikalierna och deras reaktioner under regenereringen, inklusive hur regenereringen påverkas av olika vattenhalter. (Less)
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/student-papers/record/9177687
- author
- Santesson, Gillis LU
- supervisor
- organization
- course
- KETM05 20232
- year
- 2023
- type
- H2 - Master's Degree (Two Years)
- subject
- keywords
- CCS, Carbon Capture and Storage, DMSO, AMP, chemical engineering
- language
- English
- id
- 9177687
- date added to LUP
- 2024-11-15 11:29:21
- date last changed
- 2024-11-15 11:29:21
@misc{9177687, abstract = {{Chemical absorption of acidic gases, such as CO2, using amines, is a mature technique within Carbon Capture and Storage (CCS) and rely on the equilibrium reaction for both absorption and desorption. Carbon Capture and Storage systems are suggested as viable key processes to reduce anthropogenic carbon in the atmosphere. However, the technique is divided into two different approaches: pre-combustion and post-combustion. Post-combustion is the most convenient method for already existing plants as it can be retroactively fitted at the end of the process. Utilizing the primary amine MEA in aqueous conditions has been widely used for CCS processes, but recently a more novel technique was presented with promising properties. By exchanging MEA with the sterically hindered amine AMP, together with the organic solvent DMSO during water-lean or non-aqueous conditions, a less stable carbamate will form when absorbing CO2. Due to the less stable sterically hindered carbamate produced, the regeneration temperature could be decreased, lowering the energy demand for CCS processes. This innovative technology has less available data than its predecessor and is still in the pilot stage. Because of this, a proper investigation of its behavior is necessary to determine if it has more potential than the conventional technology. As of today it is not entirely clear how the properties of the solvent will shift with successively increasing water content, and therefore the final composition after regeneration and how it will affect the amount of CO2 stripped from the solvent. The investigation will also provide information on what problems may arise when the process is possibly industrialized, for example cyclic capacity and corrosion. When investigating the solution's behavior during regeneration experiments, a multi-flask evaporator connected to a vacuum pump was used. This setup made it possible to resemble the pilot plant by enabling to control temperature, pressure, and stirring of the solution similar to the pilot plant. With the hygroscopic chemical DMSO as the solvent present in the solution, it might attract water into the system due to humid flue gases entering the system. This will cause water to accumulate in the system. If water is present, the predicted properties of the system will not match reality by allowing an alternative reaction pathway to form a more stable carbamate. Therefore, the regeneration of solutions with different water contents must also be investigated to discover the outcome. The investigation demonstrated how the water content affected how well the regeneration for the solvent occurred. A difficulty in solving the precipitation containing CO2 could be seen for solutions with a higher concentration of water, indicating that an increase in temperature or lower pressure during regeneration in the pilot is necessary to not lose some of the proposed advantages of reducing the energy consumption with the non-aqueous system with AMP and DMSO.}}, author = {{Santesson, Gillis}}, language = {{eng}}, note = {{Student Paper}}, title = {{Analyzing the regeneration behavior of AMP and DMSO in Carbon Capture with varying water content}}, year = {{2023}}, }