Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Techno-Economic Evaluation of Lignocellulosic Bio-Oil Processes

Andersson, Ellinor LU and Nyström, Klara LU (2025) KETM05 20251
Chemical Engineering (M.Sc.Eng.)
Abstract
This master’s thesis evaluates the commercial-scale feasibility of two processes that upgrade lignocellulosic bio-oil: dewatering and derivatization upgrading (DDU) and green cooking and cleaning (GCC). Both processes aim to produce upgraded bio-oil suitable for co-processing in existing oil refineries, though they differ significantly in complexity. GCC includes the entire conversion from raw biomass to upgraded bio-oil, while DDU focus solely on upgrading an already produced pyrolysis oil.

The process designs are based on an annual input of 100,000 tonne of biomass with estimated capital investments of $3.4 million for DDU and $38 million for GCC, which reflect their differing complexities. Both processes show potential for economic... (More)
This master’s thesis evaluates the commercial-scale feasibility of two processes that upgrade lignocellulosic bio-oil: dewatering and derivatization upgrading (DDU) and green cooking and cleaning (GCC). Both processes aim to produce upgraded bio-oil suitable for co-processing in existing oil refineries, though they differ significantly in complexity. GCC includes the entire conversion from raw biomass to upgraded bio-oil, while DDU focus solely on upgrading an already produced pyrolysis oil.

The process designs are based on an annual input of 100,000 tonne of biomass with estimated capital investments of $3.4 million for DDU and $38 million for GCC, which reflect their differing complexities. Both processes show potential for economic viability if a competitive sales price can be achieved. Currently, the estimated sales price for both exceeds $2200/tonne, which is more than twice that of other untreated biofuels, making market competitiveness the main barrier to economic viability. The energy demand varies significantly: DDU requires 900 MWh/tonne bio-oil, while GCC consumes 9400 MWh/tonne bio-oil, underscoring the need for energy savings in GCC. In both processes, reactants and solvents were identified as the primary cost drivers, indicating a shared limitation for economic feasibility and a key focus area for future development of upgrading processes.

For GCC, transitioning from batch to continuous operation of the cooking shows significant potential for reducing both capital and operational costs. A continuous setup demonstrated economic viability at a sales price of $1500/tonne with only a slight decrease in expenses (~25 %). Cost reductions can be achieved through validation and optimization of the liquid-liquid extraction step, solvent recycling, and utility integration. For DDU, economic viability depends largely on reducing the cost of the derivatizing reactants. Exploring alternative, lower-cost reactants is therefore crucial. Additionally, technical validation and optimization of the fractionation column should be prioritized to reduce costs.

In conclusion, both processes show potential for commercialization, if production costs are lowered through reactant substitution, improved material economy, and optimized feed ratios. Consumables remain the dominant cost driver, making their reduction is essential to achieve economically viable lignocellulosic bio-oil upgrading. Furthermore, as this is an early-stage assessment and the capital investment estimate excludes supporting infrastructure and carries a high degree of uncertainty due to multiple assumptions, it leads to a severe underestimation of the true investment required. A more detailed capital investment analysis is needed to provide a realistic and robust economic assessment. (Less)
Popular Abstract (Swedish)
Från industriella restprodukter till grönt drivmedel – två vägar mot förnybara bränslen.

Bio-olja från skogsrester kräver uppgradering för att kunna behandlas i befintliga oljeraffinaderier. Två innovativa processer visar potential, men tekniska och ekonomiska utmaningar framstår.

Att minska beroendet av fossila bränslen är avgörande för att nå klimatmålen. Ett lovande alternativ är att producera bio-olja från lignocellulosa, restprodukter från skogsindustrin såsom sågspån och bark. Dessa restprodukter genereras i stora mängden världen över med fördelen att de varken konkurrerar med livsmedelsproduktion eller tar upp jordbruksmark. Däremot krävs det ett extra uppgraderingssteg för att lignocellulosaderiverad bio-olja ska kunna... (More)
Från industriella restprodukter till grönt drivmedel – två vägar mot förnybara bränslen.

Bio-olja från skogsrester kräver uppgradering för att kunna behandlas i befintliga oljeraffinaderier. Två innovativa processer visar potential, men tekniska och ekonomiska utmaningar framstår.

Att minska beroendet av fossila bränslen är avgörande för att nå klimatmålen. Ett lovande alternativ är att producera bio-olja från lignocellulosa, restprodukter från skogsindustrin såsom sågspån och bark. Dessa restprodukter genereras i stora mängden världen över med fördelen att de varken konkurrerar med livsmedelsproduktion eller tar upp jordbruksmark. Däremot krävs det ett extra uppgraderingssteg för att lignocellulosaderiverad bio-olja ska kunna behandlas i befintliga oljeraffinaderier, till skillnad från andra förnybara oljor. Detta medför både högre kostnader och ökad teknisk komplexitet, vilket hittills har hindrat kommersialisering. För att uppnå lönsam storskalig drift krävs fortsatt forskning för att kostnadsoptimera, förbättra energieffektiviteten och optimera processdesignen.

Detta examensarbete har genomförts i samarbete med Preem och Votion Biorefineries för att utvärdera deras två respektive framtagna uppgraderingsprocesser: dewatering and derivatization upgrading (DDU), samt green cooking and cleaning (GCC). Både ämnar producera en bio-olja som går att behandla i befintliga oljeraffinaderier för att tillverka biobränslen. Syftet med arbetet var att bedöma den tekniska och ekonomiska genomförbarheten för båda processerna genom att identifiera flaskhalsar och kostnadsdrivare vid storskalig produktion, baserat på ett årligt inflöde av 100 000 ton biomassa. Resultaten visar att båda processerna har potential att bli lönsamma förutsatt att försäljningspriset sänks. I dagsläget är de uppskattade försäljningspriserna dubbelt så höga som för jämförbara obehandlade bio-oljor, vilket gör marknadskonkurrens till en avgörande utmaning. Denna situation kan dock förändras i takt med nya klimatpolitiska lagstiftningar och regleringar.

En viktig slutsats är att kostnaderna för båda processerna domineras av användningen av kemikalier och lösningsmedel. För att förbättra lönsamheten föreslår vi för DDU att undersöka alternativa reaktanter och optimera separationsstegen. För GCC rekommenderar vi att övergå från satsvis till kontinuerlig drift, vilket minskar både investerings- och driftskostnaderna, samt förbättra materialekonomin för lösningsmedlen.

Sammanfattningsvis visar båda processerna potential för kommersialisering, men kräver fortsatt ekonomisk utveckling och utvärdering för att bli marknadskraftiga alternativ till fossila bränslen. (Less)
Please use this url to cite or link to this publication:
@misc{9202556,
  abstract     = {{This master’s thesis evaluates the commercial-scale feasibility of two processes that upgrade lignocellulosic bio-oil: dewatering and derivatization upgrading (DDU) and green cooking and cleaning (GCC). Both processes aim to produce upgraded bio-oil suitable for co-processing in existing oil refineries, though they differ significantly in complexity. GCC includes the entire conversion from raw biomass to upgraded bio-oil, while DDU focus solely on upgrading an already produced pyrolysis oil.

The process designs are based on an annual input of 100,000 tonne of biomass with estimated capital investments of $3.4 million for DDU and $38 million for GCC, which reflect their differing complexities. Both processes show potential for economic viability if a competitive sales price can be achieved. Currently, the estimated sales price for both exceeds $2200/tonne, which is more than twice that of other untreated biofuels, making market competitiveness the main barrier to economic viability. The energy demand varies significantly: DDU requires 900 MWh/tonne bio-oil, while GCC consumes 9400 MWh/tonne bio-oil, underscoring the need for energy savings in GCC. In both processes, reactants and solvents were identified as the primary cost drivers, indicating a shared limitation for economic feasibility and a key focus area for future development of upgrading processes.

For GCC, transitioning from batch to continuous operation of the cooking shows significant potential for reducing both capital and operational costs. A continuous setup demonstrated economic viability at a sales price of $1500/tonne with only a slight decrease in expenses (~25 %). Cost reductions can be achieved through validation and optimization of the liquid-liquid extraction step, solvent recycling, and utility integration. For DDU, economic viability depends largely on reducing the cost of the derivatizing reactants. Exploring alternative, lower-cost reactants is therefore crucial. Additionally, technical validation and optimization of the fractionation column should be prioritized to reduce costs.

In conclusion, both processes show potential for commercialization, if production costs are lowered through reactant substitution, improved material economy, and optimized feed ratios. Consumables remain the dominant cost driver, making their reduction is essential to achieve economically viable lignocellulosic bio-oil upgrading. Furthermore, as this is an early-stage assessment and the capital investment estimate excludes supporting infrastructure and carries a high degree of uncertainty due to multiple assumptions, it leads to a severe underestimation of the true investment required. A more detailed capital investment analysis is needed to provide a realistic and robust economic assessment.}},
  author       = {{Andersson, Ellinor and Nyström, Klara}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Techno-Economic Evaluation of Lignocellulosic Bio-Oil Processes}},
  year         = {{2025}},
}