Advanced

Void growth in cyclic loaded porous plastic solid

Ristinmaa, Matti LU (1997) In Mechanics of Materials 26(4). p.227-245
Abstract
In low-cycle fatigue, where plastic strains are of great importance, final ductile fracture depends upon the mechanisms of void growth and coalescence of voids. A cell model is used to simulate a periodic array of initial spherical voids and this model is subjected to different loads that include cyclic loading. Three different types of matrix material are simulated: elastic-perfectly plastic, isotropic hardening and kinematic hardening. The cell model results are compared with the approximate constitutive equations for a voided material suggested by Gurson. The simulations show that the unspecified parameters introduced by Tvergaard in the Gurson yield function depend on the hardening behavior of the matrix material. For a perfectly... (More)
In low-cycle fatigue, where plastic strains are of great importance, final ductile fracture depends upon the mechanisms of void growth and coalescence of voids. A cell model is used to simulate a periodic array of initial spherical voids and this model is subjected to different loads that include cyclic loading. Three different types of matrix material are simulated: elastic-perfectly plastic, isotropic hardening and kinematic hardening. The cell model results are compared with the approximate constitutive equations for a voided material suggested by Gurson. The simulations show that the unspecified parameters introduced by Tvergaard in the Gurson yield function depend on the hardening behavior of the matrix material. For a perfectly plastic matrix material, the parameters q1 = 1.5 and q2 = 1.02 provide very close predictions for a variety of loadings. However, for isotropic or kinematic hardening matrix materials these parameters result in an inferior agreement and a much closer accuracy is obtained by adopting q1 = 1.5 and q2 = 0.82. This suggests that the parameter q2 depends on the hardening behavior of the matrix material. For kinematic hardening of the Gurson model, it is shown that Ziegler's hardening rule is superior to Prager's hardening rule. Finally, the void shape change due to loading is studied and it is found that this change has an insignificant effect on the response. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
porous material, void growth, plasticity
in
Mechanics of Materials
volume
26
issue
4
pages
227 - 245
publisher
Elsevier
external identifiers
  • Scopus:0031361535
ISSN
0167-6636
DOI
10.1016/S0167-6636(97)00031-8
language
English
LU publication?
yes
id
81426aa3-9019-43ac-ba35-65d02e95a9f9 (old id 2223694)
date added to LUP
2011-12-06 13:46:25
date last changed
2016-10-13 05:02:05
@misc{81426aa3-9019-43ac-ba35-65d02e95a9f9,
  abstract     = {In low-cycle fatigue, where plastic strains are of great importance, final ductile fracture depends upon the mechanisms of void growth and coalescence of voids. A cell model is used to simulate a periodic array of initial spherical voids and this model is subjected to different loads that include cyclic loading. Three different types of matrix material are simulated: elastic-perfectly plastic, isotropic hardening and kinematic hardening. The cell model results are compared with the approximate constitutive equations for a voided material suggested by Gurson. The simulations show that the unspecified parameters introduced by Tvergaard in the Gurson yield function depend on the hardening behavior of the matrix material. For a perfectly plastic matrix material, the parameters q1 = 1.5 and q2 = 1.02 provide very close predictions for a variety of loadings. However, for isotropic or kinematic hardening matrix materials these parameters result in an inferior agreement and a much closer accuracy is obtained by adopting q1 = 1.5 and q2 = 0.82. This suggests that the parameter q2 depends on the hardening behavior of the matrix material. For kinematic hardening of the Gurson model, it is shown that Ziegler's hardening rule is superior to Prager's hardening rule. Finally, the void shape change due to loading is studied and it is found that this change has an insignificant effect on the response.},
  author       = {Ristinmaa, Matti},
  issn         = {0167-6636},
  keyword      = {porous material,void growth,plasticity},
  language     = {eng},
  number       = {4},
  pages        = {227--245},
  publisher    = {ARRAY(0x8015938)},
  series       = {Mechanics of Materials},
  title        = {Void growth in cyclic loaded porous plastic solid},
  url          = {http://dx.doi.org/10.1016/S0167-6636(97)00031-8},
  volume       = {26},
  year         = {1997},
}