Advanced

Transient transport of heat, mass, and momentum in paperboard including dynamic phase change of water

Askfelt, Henrik LU ; Alexandersson, Marcus LU and Ristinmaa, Matti LU (2016) In International Journal of Engineering Science 109. p.1339-1351
Abstract

A theory to describe deforming moist paperboard in environments where both temperature and pressure change significantly during a short period of time is presented. Paperboard is viewed as an orthotropic triphasic porous medium consisting of fibers, bound water and moist air. Furthermore, the moist air is considered as a mixture of two miscible gases, namely dry air and water vapor. A two–scale hybrid mixture theory is adopted in a large strain setting and balances of mass, linear momentum, and energy are presented on the macroscale. Constitutive relations are derived on the macroscale through exploitation of the dissipation inequality. Mass exchange between bound water and water vapor is included as a dynamic process. Mass... (More)

A theory to describe deforming moist paperboard in environments where both temperature and pressure change significantly during a short period of time is presented. Paperboard is viewed as an orthotropic triphasic porous medium consisting of fibers, bound water and moist air. Furthermore, the moist air is considered as a mixture of two miscible gases, namely dry air and water vapor. A two–scale hybrid mixture theory is adopted in a large strain setting and balances of mass, linear momentum, and energy are presented on the macroscale. Constitutive relations are derived on the macroscale through exploitation of the dissipation inequality. Mass exchange between bound water and water vapor is included as a dynamic process. Mass transportation processes include chemical potential driven diffusion and nonlinear seepage flow. The elasto–plastic stress–strain response of the fiber network is described by assuming a multiplicative split of the deformation gradient associated with the motion of the fiber network. The dynamics related to the mass exchange between bound water and water vapor is illustrated by changes of pressure, relative humidity, moisture ratio, and rate of evaporation during rapid heating of a moist paperboard.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Dynamic mass exchange, Large strains, Mixture theory, Paperboard, Unsaturated porous media
in
International Journal of Engineering Science
volume
109
pages
13 pages
publisher
Elsevier
external identifiers
  • Scopus:84987943620
ISSN
0020-7225
DOI
10.1016/j.ijengsci.2016.08.005
language
English
LU publication?
yes
id
281e3ddf-e89b-406b-a8d2-7e04e7e6b288
date added to LUP
2016-10-12 10:25:07
date last changed
2016-10-12 10:25:07
@misc{281e3ddf-e89b-406b-a8d2-7e04e7e6b288,
  abstract     = {<p>A theory to describe deforming moist paperboard in environments where both temperature and pressure change significantly during a short period of time is presented. Paperboard is viewed as an orthotropic triphasic porous medium consisting of fibers, bound water and moist air. Furthermore, the moist air is considered as a mixture of two miscible gases, namely dry air and water vapor. A two–scale hybrid mixture theory is adopted in a large strain setting and balances of mass, linear momentum, and energy are presented on the macroscale. Constitutive relations are derived on the macroscale through exploitation of the dissipation inequality. Mass exchange between bound water and water vapor is included as a dynamic process. Mass transportation processes include chemical potential driven diffusion and nonlinear seepage flow. The elasto–plastic stress–strain response of the fiber network is described by assuming a multiplicative split of the deformation gradient associated with the motion of the fiber network. The dynamics related to the mass exchange between bound water and water vapor is illustrated by changes of pressure, relative humidity, moisture ratio, and rate of evaporation during rapid heating of a moist paperboard.</p>},
  author       = {Askfelt, Henrik and Alexandersson, Marcus and Ristinmaa, Matti},
  issn         = {0020-7225},
  keyword      = {Dynamic mass exchange,Large strains,Mixture theory,Paperboard,Unsaturated porous media},
  language     = {eng},
  month        = {12},
  pages        = {1339--1351},
  publisher    = {ARRAY(0x8bcf898)},
  series       = {International Journal of Engineering Science},
  title        = {Transient transport of heat, mass, and momentum in paperboard including dynamic phase change of water},
  url          = {http://dx.doi.org/10.1016/j.ijengsci.2016.08.005},
  volume       = {109},
  year         = {2016},
}