Advanced

Hydrophobicity Patterns in Protein Folding

Potthast, Frank LU (1998)
Abstract
The protein folding problem is addressed focussing on the hydro- phobicity patterns in the amino acid sequences and structures. Both real and model proteins are investigated.



The hydrophobicity pattern of real proteins is probed in two ways. First, it is asked which binary pattern is most conserved within groups of related proteins. Not unexpectedly, the most conserved patterns are strongly correlated with hydrophobicity. Second, the hydrophobicity pattern is investigated using methods that are sensitive to long-range correlations along the chains. Solid statistical evidence is found that the hydrophobic amino acids are anticorrelated along protein sequences.



The considered models are coarse-grained in... (More)
The protein folding problem is addressed focussing on the hydro- phobicity patterns in the amino acid sequences and structures. Both real and model proteins are investigated.



The hydrophobicity pattern of real proteins is probed in two ways. First, it is asked which binary pattern is most conserved within groups of related proteins. Not unexpectedly, the most conserved patterns are strongly correlated with hydrophobicity. Second, the hydrophobicity pattern is investigated using methods that are sensitive to long-range correlations along the chains. Solid statistical evidence is found that the hydrophobic amino acids are anticorrelated along protein sequences.



The considered models are coarse-grained in nature, representing all atoms of an amino acid as one site. There are only two types of amino acids in the models, hydrophobic and hydrophilic. The dynamical-parameter approach is used to explore the thermodynamic behavior of the models. The good folding sequences of the model show the same deviation from randomness as real proteins. A 3D off-lattice model is proposed, meant to model alpha-helical proteins. Finally, a novel Monte Carlo method for protein design is suggested, which is based upon the dynamical parameter method. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Vendruscolo, Michele
organization
publishing date
type
Thesis
publication status
published
subject
keywords
global optimization, multisequence, Fourier analysis, hydrophobicity, protein folding, simulated tempering, statistical physics, thermodynamics, Matematisk och allmän teoretisk fysik, kvantmekanik, klassisk mekanik, gravitation, relativitet, termodynamik, statistisk fysik, alpha-helix, protein design., Mathematical and general theoretical physics, quantum mechanics, classical mechanics, relativity, Fysicumarkivet A:1998:Potthast
pages
152 pages
publisher
Complex Systems Group, Soelvegatan 14a, S 22362 Lund
defense location
Lecture Hall B, Fysicum
defense date
1998-09-04 10:15
external identifiers
  • Other:ISRN: LUNFD6/(NFTF-1038)/1-20 (1998)
ISBN
91-628-3071-6
language
English
LU publication?
yes
id
0fd53d3c-3b0d-4995-97b0-1949bf192ec4 (old id 38815)
date added to LUP
2007-08-01 11:36:03
date last changed
2016-09-19 08:45:06
@misc{0fd53d3c-3b0d-4995-97b0-1949bf192ec4,
  abstract     = {The protein folding problem is addressed focussing on the hydro- phobicity patterns in the amino acid sequences and structures. Both real and model proteins are investigated.<br/><br>
<br/><br>
The hydrophobicity pattern of real proteins is probed in two ways. First, it is asked which binary pattern is most conserved within groups of related proteins. Not unexpectedly, the most conserved patterns are strongly correlated with hydrophobicity. Second, the hydrophobicity pattern is investigated using methods that are sensitive to long-range correlations along the chains. Solid statistical evidence is found that the hydrophobic amino acids are anticorrelated along protein sequences.<br/><br>
<br/><br>
The considered models are coarse-grained in nature, representing all atoms of an amino acid as one site. There are only two types of amino acids in the models, hydrophobic and hydrophilic. The dynamical-parameter approach is used to explore the thermodynamic behavior of the models. The good folding sequences of the model show the same deviation from randomness as real proteins. A 3D off-lattice model is proposed, meant to model alpha-helical proteins. Finally, a novel Monte Carlo method for protein design is suggested, which is based upon the dynamical parameter method.},
  author       = {Potthast, Frank},
  isbn         = {91-628-3071-6},
  keyword      = {global optimization,multisequence,Fourier analysis,hydrophobicity,protein folding,simulated tempering,statistical physics,thermodynamics,Matematisk och allmän teoretisk fysik,kvantmekanik,klassisk mekanik,gravitation,relativitet,termodynamik,statistisk fysik,alpha-helix,protein design.,Mathematical and general theoretical physics,quantum mechanics,classical mechanics,relativity,Fysicumarkivet A:1998:Potthast},
  language     = {eng},
  pages        = {152},
  publisher    = {ARRAY(0x8b63d90)},
  title        = {Hydrophobicity Patterns in Protein Folding},
  year         = {1998},
}