Advanced

Manipulation of Nanoparticles for Quantum and Single-Electron Devices

Junno, Tobias (1999)
Abstract (Swedish)
Popular Abstract in Swedish

I ett atomkraftsmikroskop avbildar man ytor och föremål genom att känna av ojämnheter med hjälp av en vass spets. Spetsen har en diameter på ca en tusendel av ett hårstrå. I avhandlingen beskrivs en teknik för hur man med denna extremt vassa spets kan manipulera nanometerstora metall- och halvledar partiklar mellan elektroder på en yta för att bygga elektriska komponenter. Genom att mäta komponenternas elektriska egenskaper under tillverkningsprocessen erhålles en noggrannhet i partikelförflyttningen på 1 Å (en tiomiljondels millimeter). På detta sätt kan gap mellan elektroder skapas, som inte är större än avståndet mellan två atomer i ett fast material och så kallade en-elektron transistorer kan... (More)
Popular Abstract in Swedish

I ett atomkraftsmikroskop avbildar man ytor och föremål genom att känna av ojämnheter med hjälp av en vass spets. Spetsen har en diameter på ca en tusendel av ett hårstrå. I avhandlingen beskrivs en teknik för hur man med denna extremt vassa spets kan manipulera nanometerstora metall- och halvledar partiklar mellan elektroder på en yta för att bygga elektriska komponenter. Genom att mäta komponenternas elektriska egenskaper under tillverkningsprocessen erhålles en noggrannhet i partikelförflyttningen på 1 Å (en tiomiljondels millimeter). På detta sätt kan gap mellan elektroder skapas, som inte är större än avståndet mellan två atomer i ett fast material och så kallade en-elektron transistorer kan byggas. Vidare kan man genom att försiktigt putta ihop och dra isär partiklar studera elektriska kvanteffekter i de atomära kontakter som uppstår. (Less)
Abstract
In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.



The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and... (More)
In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.



The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and single-electron charging effects. By moving gold nanoparticles into contact with gold electrodes separated by a small gap, atomic-scale contacts were fabricated, which exhibited quantized conductance steps and could be tuned to predefined quantized conductance values. In addition, two different techniques to build single-electron devices are presented: (i) The mechanical tuning of tunnel gaps with gold or palladium discs and (ii) by using oxidized indium aerosol particles as the central island. In the first technique gaps, only a couple of Å wide could be produced, with potential applications not only as tunnel junctions but also for the investigation of single molecules. Single and double-island single-electron transistors (SETs) were fabricated, with gate oscillations being observed at temperatures up to 25 K. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Dr Gimzewski, James K., IBM Research Division, Zurich Research Laboratory, Switzerland
publishing date
type
Thesis
publication status
published
subject
keywords
atomic force microscope, nanoparticles, aerosol particles, nanofabrication, quantum point contact, quantized conductance, Coulomb blockade, Coulomb staircase, double-dot, single-electron transistor, Physics, Fysik, Fysicumarkivet A:1999:Junno, AFM
pages
78 pages
publisher
Solid State Physics, Lund University
defense location
Hörsal B, Fysiska institutionen, Sölvegatan 14
defense date
1999-10-22 10:15
external identifiers
  • Other:ISRN: LUFTD2/TFFF--99/1055--SE
ISBN
91-628-3795-8
language
English
LU publication?
no
id
65221a26-1984-4acd-97f7-b99a5cb024ac (old id 39922)
date added to LUP
2007-08-01 12:19:14
date last changed
2016-09-19 08:45:03
@misc{65221a26-1984-4acd-97f7-b99a5cb024ac,
  abstract     = {In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.<br/><br>
<br/><br>
The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and single-electron charging effects. By moving gold nanoparticles into contact with gold electrodes separated by a small gap, atomic-scale contacts were fabricated, which exhibited quantized conductance steps and could be tuned to predefined quantized conductance values. In addition, two different techniques to build single-electron devices are presented: (i) The mechanical tuning of tunnel gaps with gold or palladium discs and (ii) by using oxidized indium aerosol particles as the central island. In the first technique gaps, only a couple of Å wide could be produced, with potential applications not only as tunnel junctions but also for the investigation of single molecules. Single and double-island single-electron transistors (SETs) were fabricated, with gate oscillations being observed at temperatures up to 25 K.},
  author       = {Junno, Tobias},
  isbn         = {91-628-3795-8},
  keyword      = {atomic force microscope,nanoparticles,aerosol particles,nanofabrication,quantum point contact,quantized conductance,Coulomb blockade,Coulomb staircase,double-dot,single-electron transistor,Physics,Fysik,Fysicumarkivet A:1999:Junno,AFM},
  language     = {eng},
  pages        = {78},
  publisher    = {ARRAY(0xb716300)},
  title        = {Manipulation of Nanoparticles for Quantum and Single-Electron Devices},
  year         = {1999},
}