Advanced

Responding Model Membranes. Lipid Phase Behaviour, Domain Formation and Permeability

Sparr, Emma LU (2001)
Abstract (Swedish)
Popular Abstract in Swedish

Ett membrans främsta funktioner är dels att fungera som en barriär och dels reglera transport mellan membranets omgivningar. I biologiska membran så utgörs barriären till stor del av lipider. Lipider är amfifila molekyler som består av en polär del som trivs i vattenrika miljöer, och opolär del som skyr vatten. I membranet så ordnar sig lipiderna i bilager. Ett bilager är ett dubbelskikt där de opolära delarna i de båda lagrens lipider vänds mot varandra och de polära delarna är i kontakt med vattenmiljörena på bilagrets båda sidor. De flesta biologiska membran består av ett enkelt bilager, men det finns flera undantag. Ett viktigt exempel på ett membran som består av många staplade bilager... (More)
Popular Abstract in Swedish

Ett membrans främsta funktioner är dels att fungera som en barriär och dels reglera transport mellan membranets omgivningar. I biologiska membran så utgörs barriären till stor del av lipider. Lipider är amfifila molekyler som består av en polär del som trivs i vattenrika miljöer, och opolär del som skyr vatten. I membranet så ordnar sig lipiderna i bilager. Ett bilager är ett dubbelskikt där de opolära delarna i de båda lagrens lipider vänds mot varandra och de polära delarna är i kontakt med vattenmiljörena på bilagrets båda sidor. De flesta biologiska membran består av ett enkelt bilager, men det finns flera undantag. Ett viktigt exempel på ett membran som består av många staplade bilager återfinns i hornlagret i den yttre skiktet av människans hud. Hornlagret kan ses som ett stort membran som hindrar kroppen från uttorkning och som skyddar den mot olika skadliga ämnen i omgivningen.



Permeabiliteten av ett bilager beror på det lipidernas fysikaliska tillstånd. I de flesta biologiska membran är bilagerna flytande kristallina. Detta innebär att lipidernas opolära kolkedjor är flytande. Om kolkedjorna är kristallina så sägs bilagrena vara i gel eller i kristallint tillstånd. Generellt kan man säga att ett flytande kristallint bilager har mycket högre permeabilitet än ett gel bilager. Biologiska membran innehåller ett stort antal olika lipider. De olika lipiderna är inte nödvändigtvis blandbara. Lipiderna kan därför fasseparera i bilagret och bilda domäner med olika sammansättningar och olika fysikaliska egenskaper. Storleken och formen av domänerna är viktiga för membranets permeabilitet. De olika bilagerstrukturerna förekommer som jämviktstrukturer under vissa förhållanden. Genom att ändra till exempel temperaturen eller vattenhalten, eller genom att tillsätta någon annan substans kan man rubba jämvikten och framkalla en fasseparation eller en fasövergång. En diffunderande molekyl kan också påverka lipidernas struktur. Om bilagrenas struktur ändras så påverkas även membranets permeabilitet. Detta leder till en koppling mellan flöde och fasbeteende.



Syftet med detta arbete har varit att undersöka samspelet mellan fasbeteende, domänbildning och permeabilitet. En stor del av arbetet är inspirerat av hudens barriäregenskaper. I experimentella och teoretiska studier har vi undersökt fasbeteendet av fosfolipider och kolesterol vid låga vattenhalter. Domänbildning har studerats i monolager (’halva bilager’) av fettsyror, ceramider och kolesterol. Resultaten från dessa studier har använts för att förutspå permeabiliteten av lipidmembran. Vi har utvecklat en modell för att beräkna flöde av vatten och andra substanser genom ett membran bestående av många staplade bilager. Det som utmärker denna modell är att vattenflödet är kopplat till ändringar i fasbeteendet. Om vattenhalten på de båda sidorna av membranet är olika så kommer vattenhalten också att variera i membranet. Denna variation kan leda till fasseparation eller fasövergångar. Detta betyder att man kan reglera membranets permeabilitet genom att variera vattenhalten i membranets omgivning. De beräknade flödena visar kvalitativ överensstämmelse med experimentella resultat för flöde över huden. (Less)
Abstract
This thesis concerns the interplay between the lipid phase behaviour, domain formation and the permeability of bilayer membranes. An essential part of this work has been the understanding of the phase transitions and equilibrium properties of lipid bilayers. In this approach experimental results of lipid phase behaviour have been correlated to theoretical descriptions of the systems. An isothermal sorption microcalorimeter was used to study the hydration of phospholipid bilayers. It was found that a decrease in osmotic pressure (water chemical potential) induces a phase transition from gel to liquid crystalline phospholipid bilayers. Phase transitions upon variations in chemical potential were also predicted from the theoretical model... (More)
This thesis concerns the interplay between the lipid phase behaviour, domain formation and the permeability of bilayer membranes. An essential part of this work has been the understanding of the phase transitions and equilibrium properties of lipid bilayers. In this approach experimental results of lipid phase behaviour have been correlated to theoretical descriptions of the systems. An isothermal sorption microcalorimeter was used to study the hydration of phospholipid bilayers. It was found that a decrease in osmotic pressure (water chemical potential) induces a phase transition from gel to liquid crystalline phospholipid bilayers. Phase transitions upon variations in chemical potential were also predicted from the theoretical model based on interlamellar forces and regular solution theory. Phospholipid-cholesterol mixtures at varying osmotic pressures have also been investigated. This study showed on a several unusual features in the phase behaviour, indicating very specific phospholipid-cholesterol interactions.



Phase segregation of the lipids involves the formation of differentiated domains in the bilayers. Domain formation in monolayers of fatty acids, ceramides and cholesterol has been investigated by means of AFM. The lipid components were chosen to serve as a model system for the lipids of stratum corneum (the outer layer of human skin). The study showed on large variations of the shape and the size of the domains. In the segregated monolayers, cholesterol acts as a lineactant (analogous to surfactant), reducing the line tension along the domain boundaries. Very small rectangular domains were observed in the ceramide-cholesterol monolayers. These domains were interpreted as two-dimensional single crystals.



A theoretical model for describing water and solute transport through a bilayer stack in the presence of a gradient in water chemical potential has been developed. The inspiration for this model is the barrier of stratum corneum. An essential feature of the model is the coupling between the water flux and the thermodynamically response to the water chemical potential. The variation in water chemical potential along the membrane can induce phase transitions and phase segregation. This results in a non-homogenous membrane, where the state of the lipids and the lateral organisation of the segregated domains are crucial for the permeability. The calculated water flux showed qualitative agreement with experimental findings for the water flux through stratum corneum. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Professor Cevc, Gregor, Technical University of Munich, Munich, Germay
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Water and solute flux, Gradients, Monolayer, Two-dimensional crystals, Line activiy, Osmotic stress, Interlamellar forces, Phospholipid-cholesterol interactions, Phase transitions, Bilayer stack, Stratum corneum, Physical chemistry, Fysikalisk kemi
pages
156 pages
publisher
Physical Chemistry 1, Lund University
defense location
Hall B, Chemical Center
defense date
2001-05-11 10:15
external identifiers
  • Other:ISRN: LUNKDL/NKFK-01/1058-SE
ISBN
91-628-4752-x
language
English
LU publication?
yes
id
fb8ebf5f-8eb3-4751-91fc-02dc1e12da8d (old id 41534)
date added to LUP
2007-10-14 16:50:27
date last changed
2016-09-19 08:45:13
@misc{fb8ebf5f-8eb3-4751-91fc-02dc1e12da8d,
  abstract     = {This thesis concerns the interplay between the lipid phase behaviour, domain formation and the permeability of bilayer membranes. An essential part of this work has been the understanding of the phase transitions and equilibrium properties of lipid bilayers. In this approach experimental results of lipid phase behaviour have been correlated to theoretical descriptions of the systems. An isothermal sorption microcalorimeter was used to study the hydration of phospholipid bilayers. It was found that a decrease in osmotic pressure (water chemical potential) induces a phase transition from gel to liquid crystalline phospholipid bilayers. Phase transitions upon variations in chemical potential were also predicted from the theoretical model based on interlamellar forces and regular solution theory. Phospholipid-cholesterol mixtures at varying osmotic pressures have also been investigated. This study showed on a several unusual features in the phase behaviour, indicating very specific phospholipid-cholesterol interactions.<br/><br>
<br/><br>
Phase segregation of the lipids involves the formation of differentiated domains in the bilayers. Domain formation in monolayers of fatty acids, ceramides and cholesterol has been investigated by means of AFM. The lipid components were chosen to serve as a model system for the lipids of stratum corneum (the outer layer of human skin). The study showed on large variations of the shape and the size of the domains. In the segregated monolayers, cholesterol acts as a lineactant (analogous to surfactant), reducing the line tension along the domain boundaries. Very small rectangular domains were observed in the ceramide-cholesterol monolayers. These domains were interpreted as two-dimensional single crystals.<br/><br>
<br/><br>
A theoretical model for describing water and solute transport through a bilayer stack in the presence of a gradient in water chemical potential has been developed. The inspiration for this model is the barrier of stratum corneum. An essential feature of the model is the coupling between the water flux and the thermodynamically response to the water chemical potential. The variation in water chemical potential along the membrane can induce phase transitions and phase segregation. This results in a non-homogenous membrane, where the state of the lipids and the lateral organisation of the segregated domains are crucial for the permeability. The calculated water flux showed qualitative agreement with experimental findings for the water flux through stratum corneum.},
  author       = {Sparr, Emma},
  isbn         = {91-628-4752-x},
  keyword      = {Water and solute flux,Gradients,Monolayer,Two-dimensional crystals,Line activiy,Osmotic stress,Interlamellar forces,Phospholipid-cholesterol interactions,Phase transitions,Bilayer stack,Stratum corneum,Physical chemistry,Fysikalisk kemi},
  language     = {eng},
  pages        = {156},
  publisher    = {ARRAY(0x9506f90)},
  title        = {Responding Model Membranes. Lipid Phase Behaviour, Domain Formation and Permeability},
  year         = {2001},
}