Advanced

Linear and Nonlinear Transport in Quantum Nanostructures

Löfgren, Anneli LU (2002)
Abstract (Swedish)
Popular Abstract in Swedish

Den här avhandlingen beskriver elektrontransport i nanometerstora halvledarstrukturer vid mycket låga temperaturer (1 nanometer = 1 miljondels millimeter). De här strukturerna har helt andra elektriska egenskaper än vanliga ledare. Man ser effekter av enskilda elektroners transport, och av kvantmekaniska fenomen som kvantiserad energi och våginterferens. Området är föremål för grundforskning, men motiveras även av tillämpningar inom mikroelektroniken och kan ha betydelse i biologiska system.



Man kan säga att en del av den här avhandlingen handlar om att spela biljard med elektroner. Det beror på att i våra små strukturer störs elektronerna inte av orenheter, utan studsar mot... (More)
Popular Abstract in Swedish

Den här avhandlingen beskriver elektrontransport i nanometerstora halvledarstrukturer vid mycket låga temperaturer (1 nanometer = 1 miljondels millimeter). De här strukturerna har helt andra elektriska egenskaper än vanliga ledare. Man ser effekter av enskilda elektroners transport, och av kvantmekaniska fenomen som kvantiserad energi och våginterferens. Området är föremål för grundforskning, men motiveras även av tillämpningar inom mikroelektroniken och kan ha betydelse i biologiska system.



Man kan säga att en del av den här avhandlingen handlar om att spela biljard med elektroner. Det beror på att i våra små strukturer störs elektronerna inte av orenheter, utan studsar mot strukturens väggar, likt biljardbollar på ett biljardbord. Det innebär att strukturens form är viktig för ledningsförmågan, och strukturerna kallas ofta för elektronbiljarder. Många egenskaper hos en elektronbiljard kan förklaras genom att betrakta elektronen som en rent klassisk partikel, men i andra fall är elektronens vågnatur viktig. Ju mindre struktur och ju lägre temperatur, desto tydligare blir interferenseffekterna. Elektronbiljarder lämpar sig för att studera gränsområdet mellan klassisk mekanik (biljardbollsmodellen) och kvantmekanik (våginterferens). Det har visats att elektronbiljardernas ledningsförmåga i mångt och mycket kan beskrivas med en halvklassisk modell där elektronerna rör sig på klassiska banor, men även har en kvantmekanisk fas.



Vi har även undersökt vad som händer när man lägger på lite större spänningar på asymmetriska triangulära elektronbiljarder. Inspirationen till de här undersökningarna kommer från så kallade "ratchets", vilket kan översättas med spärrhake eller tvättbräda. Tvättbrädestrukturer kan generera en riktad partikelström även när de inte utsätts för någon nettokraft i någon riktning, förutsatt att systemet inte befinner sig i termisk jämvikt. De fungerar även som modeller för biologiska processer som muskelsammandragningar. I våra asymmetriska elektronbiljarder har det visats att ledningsfömågan är olika för positiva och negativa spänningar, vilket innebär att en nettoström genereras om man lägger på en AC-spänning. Man får alltså effektivt sett en transport av elektroner i ena riktning trots att medelvärdet av den pålagda spänningen är lika med noll. Nettoströmmen har sitt ursprung i kvantmekaniska effekter som våginterferens och tunnling. Tunnling innebär att det finns en viss sannolikhet för en partikel att passera en barriär trots att den inte har tillräckligt med energi för att ta sig över den - partikeln tunnlar genom barriären. Det har visats att nettoströmmens riktning kan ändras genom att ändra magnetfältet, storleken på den pålagda spänningen eller helt enkelt genom att ändra temperaturen. Därmed kan våra elektronbiljarder betraktas som kvantmekaniska tvättbrädestrukturer. Läs gärna mer i den populärvetenskapliga artikeln om tvättbrädestrukturer som finns i avhandlingen. (Less)
Abstract
In this thesis, electron transport in mesoscopic semiconductor nanostructures, in particular so-called electron billiards or quantum dots, is studied. The thesis can be divided into two areas: the linear response regime of transport, and the nonlinear response regime of transport.



The classical and quantum mechanical electron dynamics are studied for triangular and square-shaped electron billiards in the linear response regime of transport. It is shown that the temperature averaged magnetoconductance can be well understood in a semi-classical single-electron picture, in which the elecrons move on classical trajectories determined by the shape of the cavity. Studied in the phase coherent regime as a function of magnetic... (More)
In this thesis, electron transport in mesoscopic semiconductor nanostructures, in particular so-called electron billiards or quantum dots, is studied. The thesis can be divided into two areas: the linear response regime of transport, and the nonlinear response regime of transport.



The classical and quantum mechanical electron dynamics are studied for triangular and square-shaped electron billiards in the linear response regime of transport. It is shown that the temperature averaged magnetoconductance can be well understood in a semi-classical single-electron picture, in which the elecrons move on classical trajectories determined by the shape of the cavity. Studied in the phase coherent regime as a function of magnetic field or Fermi energy, the conductance fluctuations, which are due to wave interference, can also be related to certain classical orbits.



In the nonlinear regime of transport, it is found that the conductance of asymmetric quantum dots is asymmetric with respect to zero bias. This leads to an average net current, when an AC voltage is applied over the device, and the devices are often referred to as quantum ratchets. In the phase coherent regime, the asymmetry of the conductance is clearly related to the effect of an electric field on the electron states inside the dot. The observed asymmetry is sensitively dependent on the amplitude of the applied bias, on the magnetic field, and on the Fermi energy. The importance of the designed dot geometry is significant, as compared to unintentional imperfections, such as impurities and fabrication inaccuracies. In the tunneling regime, the net current direction can be predicted from the shape of the tunneling barrier, and the direction can be changed by simply changing the temperature.



Rectification is also studied in artificial materials, consisting of nanometer-sized asymmetric scatterers, arranged in a two-dimensional lattice. At room temperature, the output is determined by ballistic scattering and electric field collimation, whereas at liquid helium temperatures, the output is believed to be dominated by the changed angular distribution, due to mode opening, and collimation caused by the applied voltage. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Dr Kristensen, Anders, Danmark
organization
publishing date
type
Thesis
publication status
published
subject
keywords
magnetoconductance, mesoscopic, electron billiard, quantum dot, quantum ratchets, non-linear, symmetries, non-symmetric conduction, rectification, artificial material, Halvledarfysik, Fysicumarkivet A:2002:Löfgren, ballistic transport, quantum transport, 2DEG, Semiconductory physics, InP/InGaAs, GaAs/AlGaAs
pages
136 pages
publisher
Division of Solid State Physics, Box 118, 221 00 Lund,
defense location
Sal B, Fysikum
defense date
2002-09-27 13:15
external identifiers
  • Other:ISRN: LUFTD2/TFFF-0063/1-58(2002)
ISBN
91-628-5363-1
language
English
LU publication?
yes
id
5119f5b2-0803-4357-8a08-ad42d687fb89 (old id 464983)
date added to LUP
2007-09-28 11:36:37
date last changed
2016-09-19 08:45:11
@misc{5119f5b2-0803-4357-8a08-ad42d687fb89,
  abstract     = {In this thesis, electron transport in mesoscopic semiconductor nanostructures, in particular so-called electron billiards or quantum dots, is studied. The thesis can be divided into two areas: the linear response regime of transport, and the nonlinear response regime of transport.<br/><br>
<br/><br>
The classical and quantum mechanical electron dynamics are studied for triangular and square-shaped electron billiards in the linear response regime of transport. It is shown that the temperature averaged magnetoconductance can be well understood in a semi-classical single-electron picture, in which the elecrons move on classical trajectories determined by the shape of the cavity. Studied in the phase coherent regime as a function of magnetic field or Fermi energy, the conductance fluctuations, which are due to wave interference, can also be related to certain classical orbits.<br/><br>
<br/><br>
In the nonlinear regime of transport, it is found that the conductance of asymmetric quantum dots is asymmetric with respect to zero bias. This leads to an average net current, when an AC voltage is applied over the device, and the devices are often referred to as quantum ratchets. In the phase coherent regime, the asymmetry of the conductance is clearly related to the effect of an electric field on the electron states inside the dot. The observed asymmetry is sensitively dependent on the amplitude of the applied bias, on the magnetic field, and on the Fermi energy. The importance of the designed dot geometry is significant, as compared to unintentional imperfections, such as impurities and fabrication inaccuracies. In the tunneling regime, the net current direction can be predicted from the shape of the tunneling barrier, and the direction can be changed by simply changing the temperature.<br/><br>
<br/><br>
Rectification is also studied in artificial materials, consisting of nanometer-sized asymmetric scatterers, arranged in a two-dimensional lattice. At room temperature, the output is determined by ballistic scattering and electric field collimation, whereas at liquid helium temperatures, the output is believed to be dominated by the changed angular distribution, due to mode opening, and collimation caused by the applied voltage.},
  author       = {Löfgren, Anneli},
  isbn         = {91-628-5363-1},
  keyword      = {magnetoconductance,mesoscopic,electron billiard,quantum dot,quantum ratchets,non-linear,symmetries,non-symmetric conduction,rectification,artificial material,Halvledarfysik,Fysicumarkivet A:2002:Löfgren,ballistic transport,quantum transport,2DEG,Semiconductory physics,InP/InGaAs,GaAs/AlGaAs},
  language     = {eng},
  pages        = {136},
  publisher    = {ARRAY(0xbec6478)},
  title        = {Linear and Nonlinear Transport in Quantum Nanostructures},
  year         = {2002},
}