Advanced

A Methodology to Control the Microstructure of Plasma Sprayed Coatings

Friis, Martin LU (2002)
Abstract (Swedish)
Popular Abstract in Swedish

Plasmasprutning är en process för beläggning av tunna skikt av olika material såsom metallegeringar, polymerer och keramer. Användningsområdena är åtskilliga, från titanstekpannor till oxidationskydd och värmeisolerande skikt i JAS planets motor. Plasmasprutnings processen genererar en plasmalåga när en gas, vanligtvis argon, sönderdelas mha elektrisk energi. Plasmalågan har flödeshastigheter upp mot tusen meter per sekund och temperaturer i storleksordningen 15000°C. Finfördelat pulvermaterial injiceras i plasmalågan. Pulverpartiklarna accelereras, hettas upp och smälts på väg mot ytan som ska skiktbeläggas. Vid kollision med ytan deformeras partiklarna kraftigt och fäster vid ytan. Därefter... (More)
Popular Abstract in Swedish

Plasmasprutning är en process för beläggning av tunna skikt av olika material såsom metallegeringar, polymerer och keramer. Användningsområdena är åtskilliga, från titanstekpannor till oxidationskydd och värmeisolerande skikt i JAS planets motor. Plasmasprutnings processen genererar en plasmalåga när en gas, vanligtvis argon, sönderdelas mha elektrisk energi. Plasmalågan har flödeshastigheter upp mot tusen meter per sekund och temperaturer i storleksordningen 15000°C. Finfördelat pulvermaterial injiceras i plasmalågan. Pulverpartiklarna accelereras, hettas upp och smälts på väg mot ytan som ska skiktbeläggas. Vid kollision med ytan deformeras partiklarna kraftigt och fäster vid ytan. Därefter stelnar de och bildar ett sammanhängande skikt. Skiktets mikrostruktur är heterogent innehållande defekter som sprickor och porer. Mängden defekter styrs till stor del av partiklarnas hastighet och temperatur. Eftersom skiktens mikrostruktur i hög grad bestämmer dess termiska, fysiska och mekaniska egenskaper är det mycket viktigt att kunna styra processen så att önskad mikrostruktur erhålls. Processen är komplex och påverkas av ett stort antal variabler, dels sådana som karakteriserar plasmalågan och därmed påverkar partiklarnas egenskaper, dels sådana som har direkt inverkan på skiktet. En del av dessa variabler varierar okontrollerbart samtidigt som små förändringar orsakar stora förändringar i partiklarnas hastighet och temperatur. Syftet med avhandlingen är att skapa bättre förståelse för processen för att kunna förbättra styrningen och öka reproducerbarheten. Detta gjordes genom att fastställa samband mellan processvariabler, partikelhastighet, partikeltemperatur, och mikrostruktur. Arbetet utfördes med hjälp av såväl numeriska fluidberäkningar av plasmat, partikelegenskaperna, samt deras interaktion, som experimentellt arbete. Experimentella metoder som användes var statistisk försöksplanering, optisk mätning av partikelegenskaperna i plasmalågan, samt mikrostrukturutvärdering med svepelektronmikroskopi och digital bildanalys. Det visade sig att partikelhastighet och partikeltemperatur kan styras oberoende av varandra inom vissa gränser, samt att de har stor påverkan på skiktets mikrostruktur. Andra faktorer som också påverkar mikrostrukturen markant är substratets temperatur och sprutvinkeln. De fastställda sambanden användes för att skapa en metod för kartläggning och styrning av mikrostrukturen via partikelegenskaperna och direktpåverkande variabler. Processkartor skapades, vilka beskriver partikelhastighetens och partikeltemperaturens individuella påverkan på olika skiktdefekter och på pulververkningsgraden. Baserat på processkartorna skapades en metodik för styrning av mikrostrukturen. I denna metodik specificeras mikrostrukturen varvid motsvarande partikelhastighet och partikeltemperatur intervall beräknas. Genom att hålla partikelhastighet och partikeltemperatur inom intervallen, garanteras att det önskade skiktet produceras. Arbetet ska ses som grunden för ett processkontrollverktyg med vilket skiktegenskaper kan styras och optimeras on-line i industriell produktion. (Less)
Abstract
The aim of this thesis is to enhance the overall understanding of the plasma spray process and increase control and reproducibility of the coating properties. This was performed by establishment of relationships between controllable process parameters, in-flight properties of the injected particles (velocity and temperature), and microstructure properties. The relationships were used to establish a process control strategy. The research was performed in two areas. The first area is numerical simulation using computational fluid dynamics to model the plasma, the particle in-flight properties, and the plasma particle interactions. The second area is applied experimental research, focused on observations, measurements and statistical modeling... (More)
The aim of this thesis is to enhance the overall understanding of the plasma spray process and increase control and reproducibility of the coating properties. This was performed by establishment of relationships between controllable process parameters, in-flight properties of the injected particles (velocity and temperature), and microstructure properties. The relationships were used to establish a process control strategy. The research was performed in two areas. The first area is numerical simulation using computational fluid dynamics to model the plasma, the particle in-flight properties, and the plasma particle interactions. The second area is applied experimental research, focused on observations, measurements and statistical modeling techniques. The experimental work included measurements of particle properties, and evaluation of coating microstructures, using scanning electron microscopy and an in-house image analysis code. It was shown that the relationships were satisfactorily modeled by statistical linear regression. Particle velocity and temperature could be independently controlled by the arc current and the primary gas flow rate. The variables having the largest influence on the microstructure were found to be particle velocity, particle temperature, substrate temperature, and spray angle. The process control strategy was developed by creation of process maps, describing individual microstructure features, and deposition efficiency, as functions of particle velocity and temperature. Based on these maps a process control methodology, called process windows, was established. In this method each desired coating criteria are specified and corresponding particle velocity and particle temperature ranges determined. Keeping the particle properties within these ranges ensures the coating to meet its requirements. It was also shown that prior to implementation of the process window methodology, enhanced reproducibility can be achieved by reduction of spray gun tolerance limits. This work should be regarded as a foundation for a process control tool by which coating properties can be controlled and optimized on-line in industrial production. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Professor Sampath, Sanjay, Center for Thermal Spray Research, Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794-2275
organization
publishing date
type
Thesis
publication status
published
subject
keywords
materialteknik, Materiallära, Process map, Plasma spraying, process window, Thermal Barrier Coating, Zirconia, DPV2000, particle temperature, Material technology, particle velocity
pages
174 pages
publisher
Martin Friis, University of Trollhättan/Uddevalla, P.O. Box 957, SE-461 29,
defense location
Lund, LTH, M-huset, M:B, kl.10.15
defense date
2003-01-24 10:15
external identifiers
  • Other:ISRN:LUTFD2/TFMT--02/1007--SE(1-174)
ISBN
91-628-5502-6
language
English
LU publication?
yes
id
258ad551-0f50-43ae-be77-e7b1e61f35e9 (old id 465341)
date added to LUP
2007-09-07 11:31:00
date last changed
2016-09-19 08:45:10
@misc{258ad551-0f50-43ae-be77-e7b1e61f35e9,
  abstract     = {The aim of this thesis is to enhance the overall understanding of the plasma spray process and increase control and reproducibility of the coating properties. This was performed by establishment of relationships between controllable process parameters, in-flight properties of the injected particles (velocity and temperature), and microstructure properties. The relationships were used to establish a process control strategy. The research was performed in two areas. The first area is numerical simulation using computational fluid dynamics to model the plasma, the particle in-flight properties, and the plasma particle interactions. The second area is applied experimental research, focused on observations, measurements and statistical modeling techniques. The experimental work included measurements of particle properties, and evaluation of coating microstructures, using scanning electron microscopy and an in-house image analysis code. It was shown that the relationships were satisfactorily modeled by statistical linear regression. Particle velocity and temperature could be independently controlled by the arc current and the primary gas flow rate. The variables having the largest influence on the microstructure were found to be particle velocity, particle temperature, substrate temperature, and spray angle. The process control strategy was developed by creation of process maps, describing individual microstructure features, and deposition efficiency, as functions of particle velocity and temperature. Based on these maps a process control methodology, called process windows, was established. In this method each desired coating criteria are specified and corresponding particle velocity and particle temperature ranges determined. Keeping the particle properties within these ranges ensures the coating to meet its requirements. It was also shown that prior to implementation of the process window methodology, enhanced reproducibility can be achieved by reduction of spray gun tolerance limits. This work should be regarded as a foundation for a process control tool by which coating properties can be controlled and optimized on-line in industrial production.},
  author       = {Friis, Martin},
  isbn         = {91-628-5502-6},
  keyword      = {materialteknik,Materiallära,Process map,Plasma spraying,process window,Thermal Barrier Coating,Zirconia,DPV2000,particle temperature,Material technology,particle velocity},
  language     = {eng},
  pages        = {174},
  publisher    = {ARRAY(0x89248a8)},
  title        = {A Methodology to Control the Microstructure of Plasma Sprayed Coatings},
  year         = {2002},
}