Advanced

Magnetic relaxation studies of self-associating and membrane proteins

Gottschalk, Michael LU (2003)
Abstract (Swedish)
Popular Abstract in Swedish

Kärnmagnetisk resonans (NMR) har använts för att studera proteiner i vattenlösning. Metoden studerar hur signalen från vatten återgår till jämvikt efter att ha störts från jämvikt med antingen en radiofrekvent puls eller genom en kraftig ändring av magnetfält. Återgången kallas på fackspråk för relaxation och hänger samman med molekylernas rörelse. Kopplingen till molekylernas rörelse gör att man kan få information om hur ett protein rör sig i lösningen. Proteinets rörelse är kopplad till hur stort det är och man kan därför få reda på om proteinet finns i lösningen ett och ett eller om det är samlat i dimerer (två tillsammans) eller till och med dekamerer (tio tillsammans). När proteinet fogas... (More)
Popular Abstract in Swedish

Kärnmagnetisk resonans (NMR) har använts för att studera proteiner i vattenlösning. Metoden studerar hur signalen från vatten återgår till jämvikt efter att ha störts från jämvikt med antingen en radiofrekvent puls eller genom en kraftig ändring av magnetfält. Återgången kallas på fackspråk för relaxation och hänger samman med molekylernas rörelse. Kopplingen till molekylernas rörelse gör att man kan få information om hur ett protein rör sig i lösningen. Proteinets rörelse är kopplad till hur stort det är och man kan därför få reda på om proteinet finns i lösningen ett och ett eller om det är samlat i dimerer (två tillsammans) eller till och med dekamerer (tio tillsammans). När proteinet fogas samman till enheter större än en enda molekyl talar man om proteinaggregering eller självassociation. Många proteiner fungerar sammanfogade med andra, men man förstår fortfarande principerna dåligt. NMR-relaxationsmätningarna ger en utmärkt möjlighet att studera proteinernas självassociation och komma underfund med vad som påverkar denna. Förutom i proteiners funktion förekommer proteiners aggregering i många sjukdomsförlopp som man först måste förstå för att förhindra. De proteiner, vars självassocciation studeras i denna avhandling, är BPTI som finns i människokroppen och deltar i bland annat allergiska reaktioner, proteinet lysozym, som är ett bakteriedödande protein som finns i vårt och andra djurs immunförsvar, och proteinet beta-laktoglobulin, som utgör en stor del av det protein som finns i mjölk. De två senare proteinen är också viktiga i livsmedelsindustrin då lysozym också finns i stor mängd i äggvita. Det fjärde proteinet som studeras här är bakteriorhodopsin en proteinpump, ungefär 40 Å stor (0,000004 mm), som drivs med ljusenergi och finns i en saltälskande bakterie som lever på solljus och att sönderdela små molekyler. Vattenmolekyler spelar en viktig roll i funktionen av denna pump och gör att man kan följa pumpens rörelse genom att följa vattens relaxation. Förståelse av pumpens funktion kan ses i perspektiv av nya energikällor. Att lära av små primitiva bakterier och större och mer komplicerade växter är ett av steg på vägen för att kunna konstruera nya och effektivare sätt att fånga in solens energi. (Less)
Abstract
Magnetic relaxation dispersion measurements have been performed on aqueous protein solutions to study the dynamics of waters in the proton transport channel of bacteriorhodopsin and the self-association of the proteins BPTI, lysozyme and beta-lactoglobulin. The measurements have focused on the bulk relaxation rates, R1 and R2, of three water nuclei 1H, 2H and 17O that are coupled to the protein environments by exchange and therefore report on properties such as the protein tumbling and dynamics of internal waters. The relaxation measurements have been performed using standard inversion-recovery and spin-echo sequences on constant field super-conducting magnets and field-variable iron-core magnets as well as a specialised fast field cycling... (More)
Magnetic relaxation dispersion measurements have been performed on aqueous protein solutions to study the dynamics of waters in the proton transport channel of bacteriorhodopsin and the self-association of the proteins BPTI, lysozyme and beta-lactoglobulin. The measurements have focused on the bulk relaxation rates, R1 and R2, of three water nuclei 1H, 2H and 17O that are coupled to the protein environments by exchange and therefore report on properties such as the protein tumbling and dynamics of internal waters. The relaxation measurements have been performed using standard inversion-recovery and spin-echo sequences on constant field super-conducting magnets and field-variable iron-core magnets as well as a specialised fast field cycling spectrometer using field-sequences for relaxation measurements. The internal waters of bacteriorhodopsin were found to exchange on a time scale fast compared to the rate-limiting step of the photo cycle. It was found that the formation of the BPTI decamer is promoted by both increased pH and addition of salt as the charged groups of the central part of the decamer are neutralised. The self-association is most sensitive to the nature of anion. Lysozyme was found to form dimers as well as larger polymers upon addition of salt and increase of pH. The protein was found to contain large numbers of waters with nanosecond residence times. Beta-Lactoglobulin displays a pH and salt-dependent monomer-dimer equilibrium as well as a larger aggregate around iso-electric pH, which is an octamer. For both lysozyme and beta-lactoglobulin the appearance of the relaxation dispersions is seriously influenced by absence of protein purification, which may cause both quantitative and qualitative errors in the interpretation. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Professor Härd, Torleif, Dept. of Biotechnology / Structural Biochemistry, Royal Institute of Technology (KTH), SCFAB 106 91 Stockholm, Sweden
organization
publishing date
type
Thesis
publication status
published
subject
keywords
beta-lactoglobulin A, Biokemisk teknik, Biochemical technology, HEWL, BPTI, bacteriorhodopsin, protein self-association, membrane proteins, NMR, magnetic relaxation dispersion
pages
255 pages
publisher
Biophysical Chemistry (LTH), Lund University
defense location
lecture hall B at Center for Chemistry and Chemical engineering, Lund Institute of Technology.
defense date
2003-04-10 10:30
ISBN
91-7422-015-2
language
English
LU publication?
yes
id
e857c2f7-078c-4859-ad09-8d2301852c68 (old id 465593)
date added to LUP
2007-10-14 13:44:34
date last changed
2016-09-19 08:45:11
@misc{e857c2f7-078c-4859-ad09-8d2301852c68,
  abstract     = {Magnetic relaxation dispersion measurements have been performed on aqueous protein solutions to study the dynamics of waters in the proton transport channel of bacteriorhodopsin and the self-association of the proteins BPTI, lysozyme and beta-lactoglobulin. The measurements have focused on the bulk relaxation rates, R1 and R2, of three water nuclei 1H, 2H and 17O that are coupled to the protein environments by exchange and therefore report on properties such as the protein tumbling and dynamics of internal waters. The relaxation measurements have been performed using standard inversion-recovery and spin-echo sequences on constant field super-conducting magnets and field-variable iron-core magnets as well as a specialised fast field cycling spectrometer using field-sequences for relaxation measurements. The internal waters of bacteriorhodopsin were found to exchange on a time scale fast compared to the rate-limiting step of the photo cycle. It was found that the formation of the BPTI decamer is promoted by both increased pH and addition of salt as the charged groups of the central part of the decamer are neutralised. The self-association is most sensitive to the nature of anion. Lysozyme was found to form dimers as well as larger polymers upon addition of salt and increase of pH. The protein was found to contain large numbers of waters with nanosecond residence times. Beta-Lactoglobulin displays a pH and salt-dependent monomer-dimer equilibrium as well as a larger aggregate around iso-electric pH, which is an octamer. For both lysozyme and beta-lactoglobulin the appearance of the relaxation dispersions is seriously influenced by absence of protein purification, which may cause both quantitative and qualitative errors in the interpretation.},
  author       = {Gottschalk, Michael},
  isbn         = {91-7422-015-2},
  keyword      = {beta-lactoglobulin A,Biokemisk teknik,Biochemical technology,HEWL,BPTI,bacteriorhodopsin,protein self-association,membrane proteins,NMR,magnetic relaxation dispersion},
  language     = {eng},
  pages        = {255},
  publisher    = {ARRAY(0xb360930)},
  title        = {Magnetic relaxation studies of self-associating and membrane proteins},
  year         = {2003},
}