Advanced

Theoretical Studies of Electron Transport in Quantum Dot Structures

Fasth, Carina LU (2004)
Abstract
We calculate the phase property of the reflection coefficient in two-terminal structures using a lattice tight-binding model. It is seen that, provided that there exist two coherent reflection paths, the reflection probability can be zero for certain electron energies. At these energies, the phase of the reflection coefficient shift abruptly by $pi$.



Next, we study the reflection and transmission phase properties of two-terminal structures coupled to a third lead. The systems are effectivley three-terminal and current conservation is broken with regard to the original two-terminal systems. Two structures, a waveguide with an attached stub quantum dot and a waveguide with an inline, double-barrier confined quantum dot,... (More)
We calculate the phase property of the reflection coefficient in two-terminal structures using a lattice tight-binding model. It is seen that, provided that there exist two coherent reflection paths, the reflection probability can be zero for certain electron energies. At these energies, the phase of the reflection coefficient shift abruptly by $pi$.



Next, we study the reflection and transmission phase properties of two-terminal structures coupled to a third lead. The systems are effectivley three-terminal and current conservation is broken with regard to the original two-terminal systems. Two structures, a waveguide with an attached stub quantum dot and a waveguide with an inline, double-barrier confined quantum dot, are considered. The

transmission and reflection phase properties are calculated for these systems with different couplings to the third lead. The results show that the discontinuous phase shifts seen in the current-conserved two-terminal systems are removed when the third lead is attached. However, as long as the coupling between the quantum systems and the additional lead is weak, sharp but continuous phase drops

within narrow energy ranges can still be clearly identified.



Finally, transport through a di-atomic asymmetric artificial molecule (double quantum dot) in the non-linear response regime is studied by means of the same model, but now including self-consistent electron-electron interactions in the Hartree-Fock approximation. This approach takes into account the delocalized quantum states of the two coupled quantum dots. The current-voltage characteristic is found to be strongly non-linear and strikingly different for opposite bias polarities,

indicating a possibility for the structure to be utilized as a current rectifier. We also find that it is possible to obtain spin-polarized currents. The observed features are found to result from an interplay between Pauli spin blockade and transmission through molecular states, the

localizations of which are sensitive to the applied bias. (Less)
Please use this url to cite or link to this publication:
author
supervisor
organization
publishing date
type
Thesis
publication status
published
subject
language
English
LU publication?
yes
id
15180816-4534-4668-beb6-aec2859cebf8 (old id 738757)
date added to LUP
2007-12-11 14:08:12
date last changed
2016-09-19 08:45:19
@misc{15180816-4534-4668-beb6-aec2859cebf8,
  abstract     = {We calculate the phase property of the reflection coefficient in two-terminal structures using a lattice tight-binding model. It is seen that, provided that there exist two coherent reflection paths, the reflection probability can be zero for certain electron energies. At these energies, the phase of the reflection coefficient shift abruptly by $pi$. <br/><br>
<br/><br>
Next, we study the reflection and transmission phase properties of two-terminal structures coupled to a third lead. The systems are effectivley three-terminal and current conservation is broken with regard to the original two-terminal systems. Two structures, a waveguide with an attached stub quantum dot and a waveguide with an inline, double-barrier confined quantum dot, are considered. The<br/><br>
transmission and reflection phase properties are calculated for these systems with different couplings to the third lead. The results show that the discontinuous phase shifts seen in the current-conserved two-terminal systems are removed when the third lead is attached. However, as long as the coupling between the quantum systems and the additional lead is weak, sharp but continuous phase drops<br/><br>
within narrow energy ranges can still be clearly identified.<br/><br>
<br/><br>
Finally, transport through a di-atomic asymmetric artificial molecule (double quantum dot) in the non-linear response regime is studied by means of the same model, but now including self-consistent electron-electron interactions in the Hartree-Fock approximation. This approach takes into account the delocalized quantum states of the two coupled quantum dots. The current-voltage characteristic is found to be strongly non-linear and strikingly different for opposite bias polarities,<br/><br>
indicating a possibility for the structure to be utilized as a current rectifier. We also find that it is possible to obtain spin-polarized currents. The observed features are found to result from an interplay between Pauli spin blockade and transmission through molecular states, the<br/><br>
localizations of which are sensitive to the applied bias.},
  author       = {Fasth, Carina},
  language     = {eng},
  title        = {Theoretical Studies of Electron Transport in Quantum Dot Structures},
  year         = {2004},
}