Advanced

Atmospheric transport and chemistry of trace gases in LMDz5B : Evaluation and implications for inverse modelling

Locatelli, R.; Bousquet, P.; Hourdin, F.; Saunois, M.; Cozic, A.; Couvreux, F.; Grandpeix, J. Y.; Lefebvre, M. P.; Rio, C. and Bergamaschi, P., et al. (2015) In Geoscientific Model Development 8(2). p.129-150
Abstract

Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of... (More)

Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases.

One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
publishing date
type
Contribution to journal
publication status
published
subject
in
Geoscientific Model Development
volume
8
issue
2
pages
22 pages
publisher
Copernicus Gesellschaft Mbh
external identifiers
  • Scopus:84922271532
ISSN
1991-959X
DOI
10.5194/gmd-8-129-2015
language
English
LU publication?
no
id
985cfd78-3fc0-4fad-949a-4acd85d68a06
date added to LUP
2016-08-30 14:47:24
date last changed
2016-10-30 04:49:31
@misc{985cfd78-3fc0-4fad-949a-4acd85d68a06,
  abstract     = {<p>Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. <br/><br/> One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper.</p>},
  author       = {Locatelli, R. and Bousquet, P. and Hourdin, F. and Saunois, M. and Cozic, A. and Couvreux, F. and Grandpeix, J. Y. and Lefebvre, M. P. and Rio, C. and Bergamaschi, P. and Chambers, S. D. and Karstens, U. and Kazan, V. and Van Der Laan, S. and Meijer, H. A J and Moncrieff, J. and Ramonet, M. and Scheeren, H. A. and Schlosser, C. and Schmidt, M. and Vermeulen, A. and Williams, A. G.},
  issn         = {1991-959X},
  language     = {eng},
  month        = {02},
  number       = {2},
  pages        = {129--150},
  publisher    = {ARRAY(0xb488370)},
  series       = {Geoscientific Model Development},
  title        = {Atmospheric transport and chemistry of trace gases in LMDz5B : Evaluation and implications for inverse modelling},
  url          = {http://dx.doi.org/10.5194/gmd-8-129-2015},
  volume       = {8},
  year         = {2015},
}