Advanced

Evidence for neural contribution to islet effects of DPP-4 inhibition in mice

Ahlkvist, Linda LU ; Omar, Bilal LU ; Pacini, Giovanni and Ahrén, Bo LU (2016) In European Journal of Pharmacology
Abstract

It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose,... (More)

It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose, with or without GIP or GLP-1 (both 100nM), in the presence or absence of atropine (100µM). Duodenal glucose increased circulating insulin and this effect was potentiated by DPP-4 inhibition. The increase in insulin achieved by DPP-4 inhibition was reduced by atropine by approximately 35%. Duodenal glucose also elicited an increase in circulating intact GLP-1 and GIP and this was augmented by DPP-4 inhibition, but these effects were not affected by atropine. Atropine did also not affect the augmentation by GLP-1 and GIP on glucose-stimulated insulin secretion from isolated islets. Based on these findings, we suggest that muscarinic mechanisms contribute to the stimulation of insulin secretion by DPP-4 inhibition through neural effects induced by GLP-1 and GIP whereas neural effects do not affect the levels of GLP-1 or GIP or the islet effects of the two incretin hormones.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
epub
subject
in
European Journal of Pharmacology
publisher
Elsevier
external identifiers
  • Scopus:84966393337
ISSN
1879-0712
DOI
10.1016/j.ejphar.2016.03.030
language
English
LU publication?
yes
id
e453dbe3-e1ab-49e7-9482-c0db8756ae29
date added to LUP
2016-04-13 15:16:09
date last changed
2016-10-13 05:06:13
@misc{e453dbe3-e1ab-49e7-9482-c0db8756ae29,
  abstract     = {<p>It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose, with or without GIP or GLP-1 (both 100nM), in the presence or absence of atropine (100µM). Duodenal glucose increased circulating insulin and this effect was potentiated by DPP-4 inhibition. The increase in insulin achieved by DPP-4 inhibition was reduced by atropine by approximately 35%. Duodenal glucose also elicited an increase in circulating intact GLP-1 and GIP and this was augmented by DPP-4 inhibition, but these effects were not affected by atropine. Atropine did also not affect the augmentation by GLP-1 and GIP on glucose-stimulated insulin secretion from isolated islets. Based on these findings, we suggest that muscarinic mechanisms contribute to the stimulation of insulin secretion by DPP-4 inhibition through neural effects induced by GLP-1 and GIP whereas neural effects do not affect the levels of GLP-1 or GIP or the islet effects of the two incretin hormones.</p>},
  author       = {Ahlkvist, Linda and Omar, Bilal and Pacini, Giovanni and Ahrén, Bo},
  issn         = {1879-0712},
  language     = {eng},
  month        = {03},
  publisher    = {ARRAY(0x7d55310)},
  series       = {European Journal of Pharmacology},
  title        = {Evidence for neural contribution to islet effects of DPP-4 inhibition in mice},
  url          = {http://dx.doi.org/10.1016/j.ejphar.2016.03.030},
  year         = {2016},
}