Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Generation of Model NiMo Hydrotreating Nano-catalyst via the Spark Discharge Technique

Makhool, Hatoon (2020) KETM05 20201
Chemical Engineering (M.Sc.Eng.)
Abstract
Establishing a technically practical method to generate representative model catalysts for the use in characterizations and testing prior to catalyst implementation in chemical process units would allow for a more sophisticated understanding of the underlying catalytic mechanisms. As a step towards establishing such a method, generating non-agglomerated, spherical NiMo nanoparticles, with diameters below 25 nm and atomic composition of maximum 30 at% Ni with Mo (maximum 3:7 Ni:Mo atomic ratio), for application as model hydrotreating catalysts, was addressed. The investigated method for the generation of these model nano-catalysts was the Spark discharge technique. The generation of nanoparticles through this method is carried out by... (More)
Establishing a technically practical method to generate representative model catalysts for the use in characterizations and testing prior to catalyst implementation in chemical process units would allow for a more sophisticated understanding of the underlying catalytic mechanisms. As a step towards establishing such a method, generating non-agglomerated, spherical NiMo nanoparticles, with diameters below 25 nm and atomic composition of maximum 30 at% Ni with Mo (maximum 3:7 Ni:Mo atomic ratio), for application as model hydrotreating catalysts, was addressed. The investigated method for the generation of these model nano-catalysts was the Spark discharge technique. The generation of nanoparticles through this method is carried out by employing an electric circuit, across which electrodes are connected and evaporate upon the application of a sufficiently high voltage. A furnace and a deposition chamber were also incorporated post the Spark discharge chamber to improve the morphological properties of the generated nanoparticles via sintering, and to yield supported nanoparticles for further characterizations of the nano-catalysts through SEM, EDXS and XAS.

Combinations of different system parameters were tested to deduce how the morphological and compositional characteristics of the nanoparticles are affected by these, including parameters in the electric circuit and furnace temperature.

Nanoparticles with variable characteristics were followingly yielded upon employing the different parameter combinations. Among these, nonagglomerated, spherical nano-catalysts with an average diameter of about 19.6 nm were generated as desired. The obtained compositions were 3:7 and 1:4
Ni:Mo atomic ratio. Finally, the parameter combination that produced nanoparticles with the desired properties was determined and discussed in detail. Additionally, as a means of assessing the suitability of the generated nanoparticles as nano-catalyst, the reducibility of the Ni and Mo in the nanocatalysts was examined and compared to that of industrial references. (Less)
Popular Abstract (Swedish)
Katalysatorer är viktiga komponenter i den kemiska industrin. Deras användning tillåter kemiska processer att ske på ett ekonomiskt och miljövänligt sätt, förutsatt att de är stabila och har bra aktivitet i den kemiska miljön där de tillämpas. Ett viktigt steg vid implementeringen av nya kemiska processer är alltså att utveckla lämpliga katalysatorer.
Processen att utveckla sådana kan vara väldigt resurskrävande på grund av att det ofta finns många alternativa av katalysatortyper som ska utforskas, samt många variabler som dessa olika katalysatortyper ska undersökas för. Dessutom är tillverkningen av katalysatorer för endast testning miljöovänligt på grund av att kemikalieanvändning och höga katalysförädlings temperaturer vanligtvis är... (More)
Katalysatorer är viktiga komponenter i den kemiska industrin. Deras användning tillåter kemiska processer att ske på ett ekonomiskt och miljövänligt sätt, förutsatt att de är stabila och har bra aktivitet i den kemiska miljön där de tillämpas. Ett viktigt steg vid implementeringen av nya kemiska processer är alltså att utveckla lämpliga katalysatorer.
Processen att utveckla sådana kan vara väldigt resurskrävande på grund av att det ofta finns många alternativa av katalysatortyper som ska utforskas, samt många variabler som dessa olika katalysatortyper ska undersökas för. Dessutom är tillverkningen av katalysatorer för endast testning miljöovänligt på grund av att kemikalieanvändning och höga katalysförädlings temperaturer vanligtvis är involverade.
För att undersöka möjligheten att optimera katalysatorutvecklingsprocessen
genomfördes detta arbete med syftet att utforska potentialen av en resurseffektiv och miljövänligare metod att generera katalysatorer med egenskaper som liknar dem av de industriellt tillverkade katalysatorerna. Metoden som utforskades kallas för ’Spark discharge’ tekniken och den sker i enheter som kallas för ’Spark discharge Generators (SDG)’. (Less)
Please use this url to cite or link to this publication:
author
Makhool, Hatoon
supervisor
organization
course
KETM05 20201
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Model catalyst systems, hydrotreating catalysts, NiMo catalysts, Spark discharge technique, nanoparticles, chemical engineering, kemiteknik
language
English
id
9014275
date added to LUP
2020-06-15 14:07:29
date last changed
2020-06-17 10:55:43
@misc{9014275,
  abstract     = {{Establishing a technically practical method to generate representative model catalysts for the use in characterizations and testing prior to catalyst implementation in chemical process units would allow for a more sophisticated understanding of the underlying catalytic mechanisms. As a step towards establishing such a method, generating non-agglomerated, spherical NiMo nanoparticles, with diameters below 25 nm and atomic composition of maximum 30 at% Ni with Mo (maximum 3:7 Ni:Mo atomic ratio), for application as model hydrotreating catalysts, was addressed. The investigated method for the generation of these model nano-catalysts was the Spark discharge technique. The generation of nanoparticles through this method is carried out by employing an electric circuit, across which electrodes are connected and evaporate upon the application of a sufficiently high voltage. A furnace and a deposition chamber were also incorporated post the Spark discharge chamber to improve the morphological properties of the generated nanoparticles via sintering, and to yield supported nanoparticles for further characterizations of the nano-catalysts through SEM, EDXS and XAS.

Combinations of different system parameters were tested to deduce how the morphological and compositional characteristics of the nanoparticles are affected by these, including parameters in the electric circuit and furnace temperature.

Nanoparticles with variable characteristics were followingly yielded upon employing the different parameter combinations. Among these, nonagglomerated, spherical nano-catalysts with an average diameter of about 19.6 nm were generated as desired. The obtained compositions were 3:7 and 1:4
Ni:Mo atomic ratio. Finally, the parameter combination that produced nanoparticles with the desired properties was determined and discussed in detail. Additionally, as a means of assessing the suitability of the generated nanoparticles as nano-catalyst, the reducibility of the Ni and Mo in the nanocatalysts was examined and compared to that of industrial references.}},
  author       = {{Makhool, Hatoon}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Generation of Model NiMo Hydrotreating Nano-catalyst via the Spark Discharge Technique}},
  year         = {{2020}},
}