Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Praktisk tillämpning av klimatdeklarationen

Klinthäll, Elsa LU (2020) VMTL01 20201
Division of Building Services
Division of Building Physics
Department of Building and Environmental Technology
Department of Construction Sciences
Abstract (Swedish)
Från och med 2022 ställer Boverket krav på att klimatpåverkan från nyproducerade byggnader ska redovisas uttryckt i kg koldioxidekvivalenter per kvadratmeter bruttoarea. Den s.k klimatdeklarationen utgår från livscyklisk metodik där produktskedet och byggproduktionsskedet omfattas. I klimatdeklarationen ska även periodiskt underhåll och livslängder för klimatskalet noteras. Många branschaktörer arbetar redan med klimatkalkyler och livscykelanalyser och det finns en mängd av interna miljöledningssystem, miljöcertifieringar och beräkningsverktyg för detta. Gemensamt för branschen är att det i de flesta fall inte är produktionsutfallet (“as built") som dokumenteras. Istället upprättas en klimatkalkyl i ett tidigt skede baserat på förväntade... (More)
Från och med 2022 ställer Boverket krav på att klimatpåverkan från nyproducerade byggnader ska redovisas uttryckt i kg koldioxidekvivalenter per kvadratmeter bruttoarea. Den s.k klimatdeklarationen utgår från livscyklisk metodik där produktskedet och byggproduktionsskedet omfattas. I klimatdeklarationen ska även periodiskt underhåll och livslängder för klimatskalet noteras. Många branschaktörer arbetar redan med klimatkalkyler och livscykelanalyser och det finns en mängd av interna miljöledningssystem, miljöcertifieringar och beräkningsverktyg för detta. Gemensamt för branschen är att det i de flesta fall inte är produktionsutfallet (“as built") som dokumenteras. Istället upprättas en klimatkalkyl i ett tidigt skede baserat på förväntade utfall och generisk data. Boverket utgångspunkt är att verkliga värden ska användas i så stor utsträckning som möjligt i klimatdeklarationen.
I denna studie har genomförbarheten hos klimatdeklarationen undersöks med en fallstudie - bostadshuset Lanternan i Malmö. Målet var att beskriva hur klimatdeklarationen skiljer sig från den interna klimatkalkylen entreprenören upprättat, samt att föreslå åtgärder för att effektivt arbeta med klimatdeklarationer i framtiden. Den interna klimatkalkylen upprättades i anbudsskedet med LCA-verktyget Anavitor, huvudsakligen baserat på den ekonomiska kalkylen. Fallstudiens klimatdeklaration upprättades i slutet av byggprocessen med stöd av Byggsektorns miljöberäkningsverktyg BM1.0, huvudsakligen baserat på produktionskalkylen i kombination med byggnadsbeskrivningar, fakturor och leveransrapporter. Att arbeta manuellt med inmatning i BM1.0 är tidskrävande och underlättas om kalkylen från början har rätt format och enheter, för att så lite omräkning och generaliseringar som möjligt ska krävas. I BM1.0 är datatillgången och datatransparasen låg och det saknas en funktion för att beskriva tekniska livslängder. Anavitor har bättre datatillgång och är ett mer avancerat LCA-verktyg men som kan uppfattas som svårare att hantera.
Fallstudiens klimatdeklaration visade sig ge en avsevärt mycket lägre klimatpåverkan jämfört med den interna klimatkalkylen. Skillnaden kan delvis förklaras av olika datatillgång och annorlunda inventering, men också av att träffsäkerheten i mängdningen är för låg i anbudsskedet. Verifiering av vikter är därmed en viktig åtgärd för att göra robusta klimatkalkyler. Det saknades i fallstudien specifik klimatdata för de viktmässigt betydelsefulla byggprodukterna. De levererade mängderna samt el, värme, avfall och transportavstånd kunde relativt enkelt verifieras. Drivmedel till maskiner och fordon kunde inte verifieras. Dessa problem kan åtgärdas genom att inkludera specifik klimatdata i upphandlingskrav, samt utveckla rutiner för att verifiera förbrukningen på byggarbetsplatsen. Uppföljningen av byggprocessen kan förbättras och effektiviseras genom att innan byggstart definiera vad som ska mätas och hur datainsamlingen görs. Uppföljning skapar positiva sidoeffekter i att fel, brister och slöseri inte går obemärkt förbi. Till exempel uppmärksammades i fallstudien oproportionerliga spillfraktioner, hög elförbrukning samt material med en kortare livslängd än normalt. (Less)
Abstract
As of 2022, the Swedish National Board of Housing, Building and Planning (Boverket) is requiring that the climate impact from newly developed buildings has to be calculated and reported in terms of kg carbon dioxide equivalents per m² of gross area. The so-called climate declaration is based on life-cycle methodology and covers the product stage and the construction process stage. Periodic maintenance and service life of the building envelope should also be described in the declaration. Many stakeholders in the industry are already working with climate calculations and life cycle analysis. There are a variety of different internal environmental management systems, environmental certifications and calculation tools. Common to the industry... (More)
As of 2022, the Swedish National Board of Housing, Building and Planning (Boverket) is requiring that the climate impact from newly developed buildings has to be calculated and reported in terms of kg carbon dioxide equivalents per m² of gross area. The so-called climate declaration is based on life-cycle methodology and covers the product stage and the construction process stage. Periodic maintenance and service life of the building envelope should also be described in the declaration. Many stakeholders in the industry are already working with climate calculations and life cycle analysis. There are a variety of different internal environmental management systems, environmental certifications and calculation tools. Common to the industry is that in most cases the production outcome (“as-built”) is not documented. Instead, climate calculations are prepared at an early stage based on expected outcomes and generic data. Boverket's position is that the as-built outcome should be used to the greatest extent possible, as it creates better incentives for improving conditions compared to generic scenarios.
In this study, the feasibility of the climate declaration has been investigated with a case study - the apartment building Lanternan in Malmö. The aim was to describe how the climate declaration differs from the internal climate calculation performed by the contractor, and to propose measures to effectively work with climate declarations in the future. The contractor’s internal climate calculation was created during the tender stage with the LCA-tool Anavitor, and is mainly based on the cost estimation of the project. The case study's climate declaration was created at the end of the construction process with the calculation tool BM1.0, mainly based on the material take off in combination with invoices and delivery reports. Working with manual input in BM1.0 is time-consuming but made easier if the material take off has the right units and format, so as little conversion and generalizations as possible are needed. In BM1.0, data access and data transparency are low and there is no function to describe periodic maintenance and service life. Anavitor has better data access and is a more advanced tool but can be perceived as difficult to manage.
The case study's climate declaration resulted in a significantly lower climate impact compared to the contractors . The difference can be partly explained by different data access and different inventory of materials, but also by the fact that the accuracy of the data too low at the tender stage. Verification of the quantities of concrete etc. is thus an important measure in making robust climate calculations.In the case study, there was no specific climate data available for the the most common construction products. The delivered quantities, as well as electricity, heat, waste and transports distances could be verified relatively easily. Fuel for machines and vehicles could not be verified. These problems can be handled by including specific climate data as a tendering requirement, as well as developing routines to verify the consumption at the construction site. The follow-up on the production outcome can be streamlined by defining before the start of construction what is to be measured and how data is to be collected. Follow-up also results in that wasteful condition doesn't go unnoticed. For example, in the case study, disproportionate waste fractions, high electricity consumption and materials with a shorter life than normal were noted. (Less)
Please use this url to cite or link to this publication:
author
Klinthäll, Elsa LU
supervisor
organization
alternative title
Implementation of the Swedish climate declaration for buildings
course
VMTL01 20201
year
type
M2 - Bachelor Degree
subject
keywords
Klimatdeklaration, Boverket, LCA, produktionsuppföljning, klimatkalkyl, klimatpåverkan
report number
20/5622
other publication id
LUTVDG/TVBP-20/5622-SE
language
Swedish
additional info
Handledare: Urban Persson
Examinator: Stefan Olander
id
9019365
date added to LUP
2020-06-17 17:23:08
date last changed
2020-06-17 17:23:08
@misc{9019365,
  abstract     = {{As of 2022, the Swedish National Board of Housing, Building and Planning (Boverket) is requiring that the climate impact from newly developed buildings has to be calculated and reported in terms of kg carbon dioxide equivalents per m² of gross area. The so-called climate declaration is based on life-cycle methodology and covers the product stage and the construction process stage. Periodic maintenance and service life of the building envelope should also be described in the declaration. Many stakeholders in the industry are already working with climate calculations and life cycle analysis. There are a variety of different internal environmental management systems, environmental certifications and calculation tools. Common to the industry is that in most cases the production outcome (“as-built”) is not documented. Instead, climate calculations are prepared at an early stage based on expected outcomes and generic data. Boverket's position is that the as-built outcome should be used to the greatest extent possible, as it creates better incentives for improving conditions compared to generic scenarios. 
In this study, the feasibility of the climate declaration has been investigated with a case study - the apartment building Lanternan in Malmö. The aim was to describe how the climate declaration differs from the internal climate calculation performed by the contractor, and to propose measures to effectively work with climate declarations in the future. The contractor’s internal climate calculation was created during the tender stage with the LCA-tool Anavitor, and is mainly based on the cost estimation of the project. The case study's climate declaration was created at the end of the construction process with the calculation tool BM1.0, mainly based on the material take off in combination with invoices and delivery reports. Working with manual input in BM1.0 is time-consuming but made easier if the material take off has the right units and format, so as little conversion and generalizations as possible are needed. In BM1.0, data access and data transparency are low and there is no function to describe periodic maintenance and service life. Anavitor has better data access and is a more advanced tool but can be perceived as difficult to manage. 
	The case study's climate declaration resulted in a significantly lower climate impact compared to the contractors . The difference can be partly explained by different data access and different inventory of materials, but also by the fact that the accuracy of the data too low at the tender stage. Verification of the quantities of concrete etc. is thus an important measure in making robust climate calculations.In the case study, there was no specific climate data available for the the most common construction products. The delivered quantities, as well as electricity, heat, waste and transports distances could be verified relatively easily. Fuel for machines and vehicles could not be verified. These problems can be handled by including specific climate data as a tendering requirement, as well as developing routines to verify the consumption at the construction site. The follow-up on the production outcome can be streamlined by defining before the start of construction what is to be measured and how data is to be collected. Follow-up also results in that wasteful condition doesn't go unnoticed. For example, in the case study, disproportionate waste fractions, high electricity consumption and materials with a shorter life than normal were noted.}},
  author       = {{Klinthäll, Elsa}},
  language     = {{swe}},
  note         = {{Student Paper}},
  title        = {{Praktisk tillämpning av klimatdeklarationen}},
  year         = {{2020}},
}