Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Potential till energiutvinning från deponigas på Tagenedeponin norr om Göteborg

Johansson, Erik LU (2020) KETM05 20201
Chemical Engineering (M.Sc.Eng.)
Abstract
When organic material is deposited at a landfill it is decomposed over time by microorganisms to form a gas mixture consisting of mainly methane, carbon dioxide and nitrogen called landfill gas. To limit the environmental impact from this gas there is a requirement in Sweden today that all landfills which have accepted or are accepting organic material to be equipped with a gas collection system and at least a flare to combust the methane. One such landfill is Tagene north of Gothenburg with is owned and managed by Renova AB Miljö.
Renovas policy states that greenhouse gases from handling of waste and to utilise the full potential of waste to generate benefits are prioritised climate aspects. As such there is a wish from the company to... (More)
When organic material is deposited at a landfill it is decomposed over time by microorganisms to form a gas mixture consisting of mainly methane, carbon dioxide and nitrogen called landfill gas. To limit the environmental impact from this gas there is a requirement in Sweden today that all landfills which have accepted or are accepting organic material to be equipped with a gas collection system and at least a flare to combust the methane. One such landfill is Tagene north of Gothenburg with is owned and managed by Renova AB Miljö.
Renovas policy states that greenhouse gases from handling of waste and to utilise the full potential of waste to generate benefits are prioritised climate aspects. As such there is a wish from the company to replace the flare used today with a system that utilises the energy in the landfill gas and to quantify the diffuse emissions from the landfill. Diffuse emissions compile all greenhouse gases that leaks to the atmosphere through advection or diffusion.
The techniques available to measure diffuse emissions can be divided into direct techniques that measures for example the concentration of methane and the gas flow out of the landfill (chamber techniques, eddy covariance techniques and trace gas methods) and indirect methods that model the landfill gas potential. This makes it possible to calculate the diffuse emissions as the difference between the collected gas and the total production.
To assess the current and future diffuse emissions a simulation was carried out. The simulation showed that approximately 35% of landfill gas is collected today which in carbon dioxide equivalents corresponds to 1440 metric tons of CO2ekv per year. The result from the simulation is similar to other studies. Further validation through direct measurement av diffuse emissions through trace gas or EC would increase the reliability of the model.
When modelling future emissions two parameters were identified as critical, gas collection efficiency and landfilled organic material. Three scenarios were employed for the collection efficiency, 15, 35 and 70%. Deposition was assumed to be the same as 2019. Seen over a 25-year period this resulted in emissions corresponding to 30500, 23300 and 10800 metric tons respectively.
A simulation is assessed to be the most sustainable alternative with the added benefit that it gives substratum to and investment in a gas utilisation technique. To use direct techniques is not advised. Chamber techniques would interfere with the management of the landfill to much while the investment cost for the equipment required for EC or trace gas is to high which requires it to be loaned which makes it difficult to create continuous measurements.
The available methods to utilise the landfill gas can be summarised in direct techniques which utilises the heat in the gas (boiler, hot water boiler), combined heat and power (gas engine, stirling engine, gas turbine, ORC) and upgrading techniques to produce pure methane/syngas/hydrogen. A comparison for the techniques in the three different collection scenarios showed that there are only 3 pertinent techniques for Tagene. A boiler, a stirling engine and a gas turbine.
These three techniques were then further studied in a case study where investment and management cost were calculated through quotations and literature sources. Net present value method was used to calculate profitability of investment using a return of investment of 3% and an economic lifespan of 10 years. For the 15% collection scenario no technique was profitable whilst for the 35% and 70% scenarios a boiler gave return after 7-8 years. Cost of electricity and heat was set to 0.25 SEK and 0.05 SEK, respectively. The profitability analysis prerequisites that the cost to utilize the heat in the scale house debits other projects.
The result of the case study leads to the recommendation for Renova to invest in a boiler as it brings a small economic risk whilst it meets the company incentive to utilise the landfill gas. Furthermore, the study identified improved management and maintenance and automatization of gas extraction to be key factors to improve the gas extraction and subsequently the environmental and economic performance of the site. (Less)
Popular Abstract (Swedish)
Sopberg, en bestående klimatbov eller en källa till förnybar energi?

Produktionen av metanrik gas, kallat deponigas, inuti deponier är den näst största källan till utsläpp av metan till atmosfären i Sverige. Metan är en kraftig växthusgas, 28 gånger starkare än CO2 och för att minska utsläppen från deponier är det idag lagkrav i Sverige på att samla upp gasen. Den uppsamlade gasen facklas ofta sedan, vilket är fackspråk för att förbränna den utan att använda energin. Detta bedöms av Renova som driver Tagenedeponin norr om Göteborg som slöseri och därför undersöker de nu möjligheten att göra någonting nyttigt av gasen.
Deponigas bildas då bakterier över tid bryter ner organiskt avfall som vi har lagt på deponi. Gasen kan sedan samlas... (More)
Sopberg, en bestående klimatbov eller en källa till förnybar energi?

Produktionen av metanrik gas, kallat deponigas, inuti deponier är den näst största källan till utsläpp av metan till atmosfären i Sverige. Metan är en kraftig växthusgas, 28 gånger starkare än CO2 och för att minska utsläppen från deponier är det idag lagkrav i Sverige på att samla upp gasen. Den uppsamlade gasen facklas ofta sedan, vilket är fackspråk för att förbränna den utan att använda energin. Detta bedöms av Renova som driver Tagenedeponin norr om Göteborg som slöseri och därför undersöker de nu möjligheten att göra någonting nyttigt av gasen.
Deponigas bildas då bakterier över tid bryter ner organiskt avfall som vi har lagt på deponi. Gasen kan sedan samlas upp genom långa, perforerade rör försedda med en fläkt i ena änden som sticks ner i deponin. Dessa rör kallas vanligen för brunnar och fungerar precis på samma sätt som en dammsugare! Den uppsamlade gasen kan sedan förbrännas för att producera el & värme eller renas för att användas som fordonsgas.
Problemet med brunnarna är att de inte kan fånga in all gas som produceras. På Tagene som exempel samlas ungefär 35% av gasen upp idag och resten läcker ut till atmosfären. Denna typ av utsläpp benämns vanligen som diffusa utsläpp och på Tagene motsvarar de omräknat i koldioxidekvivalenter 1500 ton CO2 per år. Det motsvarar ca 23 flygningar med ett medelstort flygplan Stockholm - New York. Det kan låta mycket, men faktum ur ett teknisk perspektiv är väldigt lite. Och mindre kommer det bli då mängden gas som produceras har minskat och kommer fortsätta minska de närmsta 25 åren.
Minskningen av producerad gas på Tagene är väldigt bra om man ser till diffusa utsläpp men det ställer till om man vill nyttja den uppsamlade gasen. Bakgrunden till det är att endast 13 kubikmeter deponigas dras ut per timme vilket omöjliggör uppgradering till fordons- eller vätgas. Faktumet är att de små flödena även gör att det är svårt att ekonomiskt försvara el & värmelösningar som stirlingmotorer eller gasturbiner. Det som däremot är möjligt är att använda värmeenergin i gasen genom en varmvattenpanna! På Tagene skulle en sådan panna kunna båda tillgodose de lokala behoven och kunna leverera värme till ett framtida fjärrvärmenät och därmed ge en avkastning på köpet!
Men för att en varmvattenpanna skall fungera på ett bra sätt är det kritiskt att flödet av gas till förbränning är någorlunda jämt! Deponigasproduktion är miljöberoende, faktorer såsom temperatur och vattentillgång påverkar mycket. Således kommer den mängd gas som samlas upp att vara varierande över året. Det är således viktigt att kontrollera hur mycket gas som samlas in vilket exempelvis kan göras genom att styra mängden uppsamlad gas baserat på effekten till kompressorn. Detta kan göras automatiskt på ett enkelt sätt. En annan sak som påverkar flödet till en eventuell varmvattenpanna är hur driftsäkert uppsamlingssystemet är. Om det står still eller fungerar sämre under långa perioder kommer det vara svårt att köra en varmvattenpanna på ett bra sätt! Således är styrning och driftsäkerhet två nödvändiga frågor att ta tag i om man vill nyttja deponigasen.
Avslutningsvis finns det få ämnen som gestaltar uttrycket ”tid är pengar” så väl som deponigas, då det blir både svårare att få ekonomi och driftsäkerhet i en anläggning allteftersom mängden deponigas minskar! (Less)
Please use this url to cite or link to this publication:
author
Johansson, Erik LU
supervisor
organization
course
KETM05 20201
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Deponigas, Diffusa Utsläpp, Energiutvinning, Avfallshantering, Nedbrytningsmodellering, Kemiteknik, Chemical engineering
language
Swedish
id
9029650
date added to LUP
2020-09-25 17:13:16
date last changed
2020-09-25 17:13:16
@misc{9029650,
  abstract     = {{When organic material is deposited at a landfill it is decomposed over time by microorganisms to form a gas mixture consisting of mainly methane, carbon dioxide and nitrogen called landfill gas. To limit the environmental impact from this gas there is a requirement in Sweden today that all landfills which have accepted or are accepting organic material to be equipped with a gas collection system and at least a flare to combust the methane. One such landfill is Tagene north of Gothenburg with is owned and managed by Renova AB Miljö. 
Renovas policy states that greenhouse gases from handling of waste and to utilise the full potential of waste to generate benefits are prioritised climate aspects. As such there is a wish from the company to replace the flare used today with a system that utilises the energy in the landfill gas and to quantify the diffuse emissions from the landfill. Diffuse emissions compile all greenhouse gases that leaks to the atmosphere through advection or diffusion. 
The techniques available to measure diffuse emissions can be divided into direct techniques that measures for example the concentration of methane and the gas flow out of the landfill (chamber techniques, eddy covariance techniques and trace gas methods) and indirect methods that model the landfill gas potential. This makes it possible to calculate the diffuse emissions as the difference between the collected gas and the total production. 
To assess the current and future diffuse emissions a simulation was carried out. The simulation showed that approximately 35% of landfill gas is collected today which in carbon dioxide equivalents corresponds to 1440 metric tons of CO2ekv per year. The result from the simulation is similar to other studies. Further validation through direct measurement av diffuse emissions through trace gas or EC would increase the reliability of the model.
When modelling future emissions two parameters were identified as critical, gas collection efficiency and landfilled organic material. Three scenarios were employed for the collection efficiency, 15, 35 and 70%. Deposition was assumed to be the same as 2019. Seen over a 25-year period this resulted in emissions corresponding to 30500, 23300 and 10800 metric tons respectively. 
A simulation is assessed to be the most sustainable alternative with the added benefit that it gives substratum to and investment in a gas utilisation technique. To use direct techniques is not advised. Chamber techniques would interfere with the management of the landfill to much while the investment cost for the equipment required for EC or trace gas is to high which requires it to be loaned which makes it difficult to create continuous measurements. 
The available methods to utilise the landfill gas can be summarised in direct techniques which utilises the heat in the gas (boiler, hot water boiler), combined heat and power (gas engine, stirling engine, gas turbine, ORC) and upgrading techniques to produce pure methane/syngas/hydrogen. A comparison for the techniques in the three different collection scenarios showed that there are only 3 pertinent techniques for Tagene. A boiler, a stirling engine and a gas turbine. 
These three techniques were then further studied in a case study where investment and management cost were calculated through quotations and literature sources. Net present value method was used to calculate profitability of investment using a return of investment of 3% and an economic lifespan of 10 years. For the 15% collection scenario no technique was profitable whilst for the 35% and 70% scenarios a boiler gave return after 7-8 years. Cost of electricity and heat was set to 0.25 SEK and 0.05 SEK, respectively. The profitability analysis prerequisites that the cost to utilize the heat in the scale house debits other projects. 
The result of the case study leads to the recommendation for Renova to invest in a boiler as it brings a small economic risk whilst it meets the company incentive to utilise the landfill gas. Furthermore, the study identified improved management and maintenance and automatization of gas extraction to be key factors to improve the gas extraction and subsequently the environmental and economic performance of the site.}},
  author       = {{Johansson, Erik}},
  language     = {{swe}},
  note         = {{Student Paper}},
  title        = {{Potential till energiutvinning från deponigas på Tagenedeponin norr om Göteborg}},
  year         = {{2020}},
}