Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Storskalig solkraft i Arktis - vilka förutsättningar finns på 69°N?

Asplund, Anton LU (2022) FMIM01 20221
Environmental and Energy Systems Studies
Abstract (Swedish)
Norge behöver utöka sin elproduktion för att möta ett framtida ökat elbehov. Vattenkraften i Norge uppskattas endast ha 23 TWh kapacitet kvar att bygga ut och vindkraft har mött starkt motstånd på senare tid. Solkraft finns fortfarande bara på liten skala i landet men uppskattas öka kraftigt i närtid. Solkraft installeras hela tiden längre norrut men än finns ingen storskalig solkraft i norra Norge. Den här studien undersöker möjligheten för en sådan installation i närheten av Skibotn som ligger på 69°N. Detta görs genom att simulera olika solkraftssystem i PVSyst där resultaten sedan används för att undersöka lönsamheten genom koncepten levelized cost of energy (LCOE) samt net present value. Klimatavtrycket från solkraftsproduktionen... (More)
Norge behöver utöka sin elproduktion för att möta ett framtida ökat elbehov. Vattenkraften i Norge uppskattas endast ha 23 TWh kapacitet kvar att bygga ut och vindkraft har mött starkt motstånd på senare tid. Solkraft finns fortfarande bara på liten skala i landet men uppskattas öka kraftigt i närtid. Solkraft installeras hela tiden längre norrut men än finns ingen storskalig solkraft i norra Norge. Den här studien undersöker möjligheten för en sådan installation i närheten av Skibotn som ligger på 69°N. Detta görs genom att simulera olika solkraftssystem i PVSyst där resultaten sedan används för att undersöka lönsamheten genom koncepten levelized cost of energy (LCOE) samt net present value. Klimatavtrycket från solkraftsproduktionen beräknas genom en livscykelanalys och resultatet jämförs sedan med andra energislag. Studien inkluderar en litteraturundersökning vilken utgör basen för bakgrundskapitlet. Det är tydligt att forskning på solkraft i snöiga klimat samt simulering med bifacial teknik är relativt nytt då det finns kunskapsluckor i litteraturen, speciellt när det gäller värden på snöskuggning. Dessa snöskuggningsvärden orsakar den största osäkerheten i simuleringen. Simuleringnen i PVSyst utfördes med 1 MW system där olika uppsättningar av monofacial och bifacial moduler jämfördes. Instrålningsdata har samlats under fem år med en pyranometer och väderdata har insamlats från närliggande Kilpisjärvi. Resultaten visar att bifacial moduler producerar ungefär 15 % mer än motsvarande monofacial system. Det system som producerar mest är det system som utgörs av bifacial moduler med 45° lutning som vetter mot söder. De två vertikala bifacial system, som vetter mot Syd-Nord samt Öst-Väst, ger liknande produktionsvärden men med olika produktionsprofiler.

LCOE är 36 NOK-øre/kWh i bas-scenariot. Med en livslängd på 40 år, vilket är högst möjligt här i Norden, blir LCOE 32 NOK-øre/kWh. Båda dessa scenarier är lönsamma när man inkluderar framtida uppskattningar av elpriset i prisområde NO4. Det bör noteras att dessa uträkningar är med en låg real weighted average cost of capital på 1.39 %. Detta är dock i linje med de diskonteringsräntor som rapporterats i Sverige och Tyskland på senare tid. Klimatavtrycket för solkraft i Skibotn är 28 g CO2-ekv./kWh vilket är ungefär dubbelt så mycket som för vindkraft och fyrdubbelt det för vattenkraft. Om modulerna vore producerade i Europa eller Norge så vore klimatavtrycket 22 g CO2-ekv./kWh och 17 g CO2-ekv./kWh för de respektive regionerna. Detta visar att om modulerna är tillverkade där elen har ett lågt klimatavtryck så kan solkraftens klimatavtryck vara i samma storlek som vindkraft, även långt norrut. Solkraftens produktionsprofil överlappar med vindkraftens då solkraft producerar mest om sommaren och vindkraft om vintern. Den kombinerade produktionsprofilen blir således jämnare om de två kraftslagen kombineras. Ny solkraft kan byggas där det redan finns vindkraft, på så sätt lägger solkraften inte beslag på nya landområden. Dessutom så finns infrastruktur, så som vägar och nätanslutning, redan på plats och kapacitetsutnyttjandet av dessa kraftledningar blir högre i ett kombinerat system. Resultaten av denna studie visar att solkraft i arktiska Norge kan vara ekonomiskt lönsamt redan idag, givet att diskonteringsräntorna är så pass låga som de varit i Sverige på senare år. Dessutom så tror svenska ledare inom industrin att kapitalkostnaderna kommer att fortsätta att gå ner med 40 % de närmsta 10 åren. En sådan kostnadsminskning skulle ge ett LCOE på 27 NOK-øre/kWh för solkraft i Skibotn och göra en sådan investering mycket intressant från en ekonomisk synvinkel. En sådan kostnadsminskning är i linje med projektionen från International Renewable Energy Agency då de uppskattar att LCOE kommer att gå ner med 58 % i genomsnitt mellan 2019-2030 i G20-länderna. Storskalig solkraft i norra Norge bör utredas vidare med tanke på resultaten i denna studie. Speciellt snöskuggningsförluster för storskaliga system kan med fördel studeras vidare. (Less)
Abstract
Norway needs to increase its power production to meet the future increase in electricity use. Hydro power is estimated to only have 23 TWh of additional available capacity and wind power has met strong resistance lately. Solar power is still only implemented on small scale in Norway but is predicted to increase rapidly in the near future. It is steadily being implemented further north, however there are still no utility scale solar power in northern Norway. This study investigates the feasibility of such an installation close to Skibotn at 69°N. This is done by simulating different PV-systems in PVSyst where the results from the simulations is then used to investigate the economic feasibility through the concepts levelized cost of energy... (More)
Norway needs to increase its power production to meet the future increase in electricity use. Hydro power is estimated to only have 23 TWh of additional available capacity and wind power has met strong resistance lately. Solar power is still only implemented on small scale in Norway but is predicted to increase rapidly in the near future. It is steadily being implemented further north, however there are still no utility scale solar power in northern Norway. This study investigates the feasibility of such an installation close to Skibotn at 69°N. This is done by simulating different PV-systems in PVSyst where the results from the simulations is then used to investigate the economic feasibility through the concepts levelized cost of energy (LCOE) and net present value. The carbon footprint of the solar power produced is also investigated through a life cycle analysis and compared to other sources of electricity. The study includes a literature study which is the basis of the background chapter. It is clear that the research on solar power in snowy areas as well as the modelling of bifacial modules are rather new. There are some knowledge gaps in the literature, especially regarding snow soiling values. These values caused the greatest uncertainty when performing the simulation. The simulation in PVSyst is carried out on 1 MW systems where different set ups of monofacial and bifacial modules are compared. Irradiation data has been gathered on site with a pyranometer for five years and weather data were collected from nearby Kilpisjärvi. The results show that bifacial modules produce roughly 15 % more than their monofacial counterpart. The system that resulted in the highest yield was the bifacial system facing true south with tilt 45°. The two vertical systems, facing South-North and East-West, showed similar yield but different production profiles.

The LCOE is 36 NOK-øre/kWh in the baseline scenario. However, it is 32 NOK-øre/kWh when the life time is set to 40 years, something that is very reasonable in this Nordic location. Both of these scenarios are profitable when comparing with future predictions of the electricity price in electricity price area NO4. It should be noted that these calculations are performed with a low real weighted average cost of capital of 1.39 %. Nevertheless, this is consistent with discount rates used in Sweden and Germany lately. The carbon intensity is 28 g CO2-eq./kWh which is roughly double that of mixed wind power and 4 times more than hydro power. If the production of PV-modules would be placed in Europe or Norway then the carbon intensity would be 22 g CO2-eq./kWh and 17 g CO2-eq./kWh respectively. This shows that if the modules are produces in a region with a low-carbon grid mix then solar power can meet the carbon footprint of mixed wind power, also in a high latitude area. Solar power shows to be a good match to wind power when comparing the two production profiles. Wind power produces energy mainly during winter and the opposite is true for solar power. The yearly production profile gets smoother if the two power sources are combined. There is a possibility to implement new solar power in conjunction with already existing wind power, that way there is less need to use new areas for power production. Also, infrastructure such as roads and grid connection are already in place and the capacity factor of these power lines will increase in such a system. The findings in this paper show that solar power in northern Norway could be economically feasible already today if the discount rate is as low as in Sweden lately. In addition, Swedish industry leader predicts that the capital expenditure will go down by 40 % in ten years. Such a cost reduction would give an LCOE of 27 NOK-øre/kWh and makes solar power very interesting from an economical point of view. This cost reduction is in line with the predictions of the International Renewable Energy Agency which estimates the LCOE to go down by 58 % on average between 2019-2030 in the G20 countries. Utility scale solar power in the Arctic should be further investigated considering the results in this pre-study. Especially snow soiling data from an actual utility scale system would be beneficial for further research and for the industry. (Less)
Please use this url to cite or link to this publication:
author
Asplund, Anton LU
supervisor
organization
alternative title
Utility scale solar power in the Arctic - is it feasible at 69°N?
course
FMIM01 20221
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Solar power Arctic Bifacial LCOE PV NPV LCA GWP High latitude area NO4
report number
ISRN LUTFD2/TFEM-22/5179--SE + (1-82)
ISSN
1102-3651
language
English
id
9091741
date added to LUP
2022-06-22 09:24:55
date last changed
2022-06-22 09:24:55
@misc{9091741,
  abstract     = {{Norway needs to increase its power production to meet the future increase in electricity use. Hydro power is estimated to only have 23 TWh of additional available capacity and wind power has met strong resistance lately. Solar power is still only implemented on small scale in Norway but is predicted to increase rapidly in the near future. It is steadily being implemented further north, however there are still no utility scale solar power in northern Norway. This study investigates the feasibility of such an installation close to Skibotn at 69°N. This is done by simulating different PV-systems in PVSyst where the results from the simulations is then used to investigate the economic feasibility through the concepts levelized cost of energy (LCOE) and net present value. The carbon footprint of the solar power produced is also investigated through a life cycle analysis and compared to other sources of electricity. The study includes a literature study which is the basis of the background chapter. It is clear that the research on solar power in snowy areas as well as the modelling of bifacial modules are rather new. There are some knowledge gaps in the literature, especially regarding snow soiling values. These values caused the greatest uncertainty when performing the simulation. The simulation in PVSyst is carried out on 1 MW systems where different set ups of monofacial and bifacial modules are compared. Irradiation data has been gathered on site with a pyranometer for five years and weather data were collected from nearby Kilpisjärvi. The results show that bifacial modules produce roughly 15 % more than their monofacial counterpart. The system that resulted in the highest yield was the bifacial system facing true south with tilt 45°. The two vertical systems, facing South-North and East-West, showed similar yield but different production profiles. 

The LCOE is 36 NOK-øre/kWh in the baseline scenario. However, it is 32 NOK-øre/kWh when the life time is set to 40 years, something that is very reasonable in this Nordic location. Both of these scenarios are profitable when comparing with future predictions of the electricity price in electricity price area NO4. It should be noted that these calculations are performed with a low real weighted average cost of capital of 1.39 %. Nevertheless, this is consistent with discount rates used in Sweden and Germany lately. The carbon intensity is 28 g CO2-eq./kWh which is roughly double that of mixed wind power and 4 times more than hydro power. If the production of PV-modules would be placed in Europe or Norway then the carbon intensity would be 22 g CO2-eq./kWh and 17 g CO2-eq./kWh respectively. This shows that if the modules are produces in a region with a low-carbon grid mix then solar power can meet the carbon footprint of mixed wind power, also in a high latitude area. Solar power shows to be a good match to wind power when comparing the two production profiles. Wind power produces energy mainly during winter and the opposite is true for solar power. The yearly production profile gets smoother if the two power sources are combined. There is a possibility to implement new solar power in conjunction with already existing wind power, that way there is less need to use new areas for power production. Also, infrastructure such as roads and grid connection are already in place and the capacity factor of these power lines will increase in such a system. The findings in this paper show that solar power in northern Norway could be economically feasible already today if the discount rate is as low as in Sweden lately. In addition, Swedish industry leader predicts that the capital expenditure will go down by 40 % in ten years. Such a cost reduction would give an LCOE of 27 NOK-øre/kWh and makes solar power very interesting from an economical point of view. This cost reduction is in line with the predictions of the International Renewable Energy Agency which estimates the LCOE to go down by 58 % on average between 2019-2030 in the G20 countries. Utility scale solar power in the Arctic should be further investigated considering the results in this pre-study. Especially snow soiling data from an actual utility scale system would be beneficial for further research and for the industry.}},
  author       = {{Asplund, Anton}},
  issn         = {{1102-3651}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Storskalig solkraft i Arktis - vilka förutsättningar finns på 69°N?}},
  year         = {{2022}},
}