Advanced

Spatial Encoding of Translational Optic Flow in Planar Scenes by Elementary Motion Detector Arrays

Lecoeur, Julien LU ; Baird, Emily LU and Floreano, Dario (2018) In Scientific Reports 8(1).
Abstract

Elementary Motion Detectors (EMD) are well-established models of visual motion estimation in insects. The response of EMDs are tuned to specific temporal and spatial frequencies of the input stimuli, which matches the behavioural response of insects to wide-field image rotation, called the optomotor response. However, other behaviours, such as speed and position control, cannot be fully accounted for by EMDs because these behaviours are largely unaffected by image properties and appear to be controlled by the ratio between the flight speed and the distance to an object, defined here as relative nearness. We present a method that resolves this inconsistency by extracting an unambiguous estimate of relative nearness from the output of an... (More)

Elementary Motion Detectors (EMD) are well-established models of visual motion estimation in insects. The response of EMDs are tuned to specific temporal and spatial frequencies of the input stimuli, which matches the behavioural response of insects to wide-field image rotation, called the optomotor response. However, other behaviours, such as speed and position control, cannot be fully accounted for by EMDs because these behaviours are largely unaffected by image properties and appear to be controlled by the ratio between the flight speed and the distance to an object, defined here as relative nearness. We present a method that resolves this inconsistency by extracting an unambiguous estimate of relative nearness from the output of an EMD array. Our method is suitable for estimation of relative nearness in planar scenes such as when flying above the ground or beside large flat objects. We demonstrate closed loop control of the lateral position and forward velocity of a simulated agent flying in a corridor. This finding may explain how insects can measure relative nearness and control their flight despite the frequency tuning of EMDs. Our method also provides engineers with a relative nearness estimation technique that benefits from the low computational cost of EMDs.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Scientific Reports
volume
8
issue
1
article number
5821
publisher
Nature Publishing Group
external identifiers
  • pmid:29643402
  • scopus:85045397863
ISSN
2045-2322
DOI
10.1038/s41598-018-24162-z
language
English
LU publication?
yes
id
009f561f-3159-44cf-9899-083b20a42fd6
date added to LUP
2018-04-23 12:21:24
date last changed
2020-11-24 03:37:56
@article{009f561f-3159-44cf-9899-083b20a42fd6,
  abstract     = {<p>Elementary Motion Detectors (EMD) are well-established models of visual motion estimation in insects. The response of EMDs are tuned to specific temporal and spatial frequencies of the input stimuli, which matches the behavioural response of insects to wide-field image rotation, called the optomotor response. However, other behaviours, such as speed and position control, cannot be fully accounted for by EMDs because these behaviours are largely unaffected by image properties and appear to be controlled by the ratio between the flight speed and the distance to an object, defined here as relative nearness. We present a method that resolves this inconsistency by extracting an unambiguous estimate of relative nearness from the output of an EMD array. Our method is suitable for estimation of relative nearness in planar scenes such as when flying above the ground or beside large flat objects. We demonstrate closed loop control of the lateral position and forward velocity of a simulated agent flying in a corridor. This finding may explain how insects can measure relative nearness and control their flight despite the frequency tuning of EMDs. Our method also provides engineers with a relative nearness estimation technique that benefits from the low computational cost of EMDs.</p>},
  author       = {Lecoeur, Julien and Baird, Emily and Floreano, Dario},
  issn         = {2045-2322},
  language     = {eng},
  month        = {12},
  number       = {1},
  publisher    = {Nature Publishing Group},
  series       = {Scientific Reports},
  title        = {Spatial Encoding of Translational Optic Flow in Planar Scenes by Elementary Motion Detector Arrays},
  url          = {http://dx.doi.org/10.1038/s41598-018-24162-z},
  doi          = {10.1038/s41598-018-24162-z},
  volume       = {8},
  year         = {2018},
}