Hausdorff dimension of recurrence sets
(2024) In Nonlinearity 37(5).- Abstract
We consider linear mappings on the 2-dimensional torus, defined by T ( x ) = A x ( mod 1 ) , where A is an invertible 2 × 2 integer matrix, with no eigenvalues on the unit circle. In the case det A = ± 1 , we give a formula for the Hausdorff dimension of the set { x ∈ T 2 : d ( T n ( x ) , x ) < e − α n for infinitely many n } .
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/04d4fab2-d53b-4e4a-b9ef-f5558577ae03
- author
- Hu, Zhang Nan
and Persson, Tomas
LU
- organization
- publishing date
- 2024-05-01
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Hausdorff dimension, linear maps, recurrence
- in
- Nonlinearity
- volume
- 37
- issue
- 5
- article number
- 055010
- publisher
- IOP Publishing
- external identifiers
-
- scopus:85189357297
- ISSN
- 0951-7715
- DOI
- 10.1088/1361-6544/ad3597
- language
- English
- LU publication?
- yes
- id
- 04d4fab2-d53b-4e4a-b9ef-f5558577ae03
- date added to LUP
- 2024-04-22 14:35:45
- date last changed
- 2025-04-04 15:28:10
@article{04d4fab2-d53b-4e4a-b9ef-f5558577ae03, abstract = {{<p>We consider linear mappings on the 2-dimensional torus, defined by T ( x ) = A x ( mod 1 ) , where A is an invertible 2 × 2 integer matrix, with no eigenvalues on the unit circle. In the case det A = ± 1 , we give a formula for the Hausdorff dimension of the set { x ∈ T 2 : d ( T n ( x ) , x ) < e − α n for infinitely many n } .</p>}}, author = {{Hu, Zhang Nan and Persson, Tomas}}, issn = {{0951-7715}}, keywords = {{Hausdorff dimension; linear maps; recurrence}}, language = {{eng}}, month = {{05}}, number = {{5}}, publisher = {{IOP Publishing}}, series = {{Nonlinearity}}, title = {{Hausdorff dimension of recurrence sets}}, url = {{http://dx.doi.org/10.1088/1361-6544/ad3597}}, doi = {{10.1088/1361-6544/ad3597}}, volume = {{37}}, year = {{2024}}, }