Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Surface complexation and precipitation at the H+-orthophosphate-aged gamma-Al2O3/water interface

Laiti, E. ; Persson, Per LU and Ohman, L. O. (1996) In Langmuir 12. p.2969-2975
Abstract
Surface complexation of orthophosphate ions at the water-suspended-and-aged gamma-Al2O3/water interface has been studied by means of a series of batch experiments in 0.1 M Na(Cl) medium at 25.0 degrees C in the range 4.8 < -log [H+] < 9.6. The ratio between phosphate concentration and concentration of surface active groups (=AlOH) was varied between 0.15 and 1.50. The suspensions were equilibrated for 5 h, and experimental data consisted of measured -log [H+] and nonbound phosphate analyses. The orthophosphate ions were found to bind to the surface with high affinity at -log [H+] < 7.5. In the data evaluation, contributions from electrostatic forces were accounted for by using the constant-capacitance model. The acid/base... (More)
Surface complexation of orthophosphate ions at the water-suspended-and-aged gamma-Al2O3/water interface has been studied by means of a series of batch experiments in 0.1 M Na(Cl) medium at 25.0 degrees C in the range 4.8 < -log [H+] < 9.6. The ratio between phosphate concentration and concentration of surface active groups (=AlOH) was varied between 0.15 and 1.50. The suspensions were equilibrated for 5 h, and experimental data consisted of measured -log [H+] and nonbound phosphate analyses. The orthophosphate ions were found to bind to the surface with high affinity at -log [H+] < 7.5. In the data evaluation, contributions from electrostatic forces were accounted for by using the constant-capacitance model. The acid/base properties of the hydroxylated alumina surface (=AlOH) have been investigated earlier and are described by two intrinsic equilibrium constants, log beta(110) = 7.51 and log beta(-110) = -8.87 and with a specific capacitance of 1.40 F/m(2). The model describing the phosphate complexation to the alumina surface is given by the following equilibria: =AlOH + H2PO4- + H+ reversible arrow =AlPO4H2 + H2O (log beta(111(int)) = 11.49 +/- 0.08); =AlOH + H2PO4- reversible arrow =AlPO4H- + H2O (log beta(011(int)) = 5.14 +/- 0.07); =AlOH + H2PO4- reversible arrow =AlPO42- + H+ + H2O (log beta(-111(int)) = -1.82 +/- 0.04). The uncertainties reported correspond to 3 sigma(log beta). In the presence of excess phosphate and at extended equilibration periods, a slow continuing decrease in nonbound phosphate concentration was observed. By means of diffuse reflectance FTIR measurements, this phenomenon was shown to be caused by a slow transformation into an aluminum phosphate solid phase. The surface complexation reactions evaluated in this work should therefore be regarded as a metastable state, strictly valid only in freshly prepared suspensions. However, FTIR data collected at deficit phosphate conditions indicate that this phase transformation is hardly noticeable unless an excess of ligand was introduced to the system. This implies that the presented semiequilibrium model is likely to provide a thermodynamic description of the equilibria in the system for [H2PO4-](tot)/[=AlOH](tot) < 1. (Less)
Please use this url to cite or link to this publication:
author
; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Langmuir
volume
12
pages
2969 - 2975
publisher
The American Chemical Society (ACS)
external identifiers
  • scopus:0001356234
ISSN
0743-7463
DOI
10.1021/la9515074
language
English
LU publication?
no
additional info
12
id
069af059-4634-4a4c-8fe1-ca33fc0256bb (old id 4332685)
date added to LUP
2016-04-01 12:26:31
date last changed
2022-01-27 03:49:34
@article{069af059-4634-4a4c-8fe1-ca33fc0256bb,
  abstract     = {{Surface complexation of orthophosphate ions at the water-suspended-and-aged gamma-Al2O3/water interface has been studied by means of a series of batch experiments in 0.1 M Na(Cl) medium at 25.0 degrees C in the range 4.8 &lt; -log [H+] &lt; 9.6. The ratio between phosphate concentration and concentration of surface active groups (=AlOH) was varied between 0.15 and 1.50. The suspensions were equilibrated for 5 h, and experimental data consisted of measured -log [H+] and nonbound phosphate analyses. The orthophosphate ions were found to bind to the surface with high affinity at -log [H+] &lt; 7.5. In the data evaluation, contributions from electrostatic forces were accounted for by using the constant-capacitance model. The acid/base properties of the hydroxylated alumina surface (=AlOH) have been investigated earlier and are described by two intrinsic equilibrium constants, log beta(110) = 7.51 and log beta(-110) = -8.87 and with a specific capacitance of 1.40 F/m(2). The model describing the phosphate complexation to the alumina surface is given by the following equilibria: =AlOH + H2PO4- + H+ reversible arrow =AlPO4H2 + H2O (log beta(111(int)) = 11.49 +/- 0.08); =AlOH + H2PO4- reversible arrow =AlPO4H- + H2O (log beta(011(int)) = 5.14 +/- 0.07); =AlOH + H2PO4- reversible arrow =AlPO42- + H+ + H2O (log beta(-111(int)) = -1.82 +/- 0.04). The uncertainties reported correspond to 3 sigma(log beta). In the presence of excess phosphate and at extended equilibration periods, a slow continuing decrease in nonbound phosphate concentration was observed. By means of diffuse reflectance FTIR measurements, this phenomenon was shown to be caused by a slow transformation into an aluminum phosphate solid phase. The surface complexation reactions evaluated in this work should therefore be regarded as a metastable state, strictly valid only in freshly prepared suspensions. However, FTIR data collected at deficit phosphate conditions indicate that this phase transformation is hardly noticeable unless an excess of ligand was introduced to the system. This implies that the presented semiequilibrium model is likely to provide a thermodynamic description of the equilibria in the system for [H2PO4-](tot)/[=AlOH](tot) &lt; 1.}},
  author       = {{Laiti, E. and Persson, Per and Ohman, L. O.}},
  issn         = {{0743-7463}},
  language     = {{eng}},
  pages        = {{2969--2975}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Langmuir}},
  title        = {{Surface complexation and precipitation at the H+-orthophosphate-aged gamma-Al2O3/water interface}},
  url          = {{http://dx.doi.org/10.1021/la9515074}},
  doi          = {{10.1021/la9515074}},
  volume       = {{12}},
  year         = {{1996}},
}